Graphical Abstract Figure

Burned mass fraction of CH4/30%H2 blend as a function of EGR

Graphical Abstract Figure

Burned mass fraction of CH4/30%H2 blend as a function of EGR

Close modal

Abstract

The combustion process in spark ignition (SI) and compression ignition (CI) engines plays a significant role in ascertaining engine performance, efficiency, and emissions. As the automotive industry faces challenges related to energy conservation and environmental impacts, understanding and optimizing SI and CI engine combustion become paramount. This study uses a zero-dimensional (0D) internal combustion engine (ICE) model utilizing the Wiebe function to predict mass fraction burned profiles in port fuel injection (PFI) engines. The model incorporates chemical reactions of air–fuel mixtures under lean and rich combustion conditions, accounting for residual and exhaust gas recirculation (EGR). Pressure-based equilibrium constants are applied for rich combustion reactions. Further implementation of the combustion reaction model requires an accurate estimate of the combustion duration. As a result, an exploration of analogous efforts in the literature was accomplished, subsequently drawing insights. This resulted in the development of an empirical model that predicts combustion duration for various fuels such as gasoline, natural gas, propane, methanol, ethanol, hydrogen, and methane–hydrogen blends under different conditions. This includes a unique feature of spark timing variation with run-time conditions. Flame speed data, notably a maximum adiabatic flame speed at an equivalence ratio of 1.1, serve as normalization parameters. The model shows a relative fit to experimental data (R2-values: 0.729–0.972) and is explored through parametric studies, thus demonstrating its utility in simulating fuels under various engine runtime operating conditions.

References

1.
Heywood
,
J. B.
,
2019
,
Internal Combustion Engine Fundamentals 2E
, 2nd ed.,
McGraw-Hill Education
,
New York
.
2.
Chincholkar
,
S. P.
, and
Suryawanshi
,
J. G.
,
2016
, “
Gasoline Direct Injection: An Efficient Technology
,”
Energy Proc.
,
90
, pp.
666
672
.10.1016/j.egypro.2016.11.235
3.
Depcik
,
C.
,
Internal Combustion Engines: ME 636, Lecture Notes
,
University of Kansas
,
Lawrence, KS
.
4.
Agarwal
,
A. K.
,
Solanki
,
V. S.
, and
Krishnamoorthi
,
M.
,
2023
, “
Gasoline Compression Ignition (GCI) Combustion in a Light-Duty Engine Using Double Injection Strategy
,”
Appl. Therm. Eng.
,
223
, p.
120006
.10.1016/j.applthermaleng.2023.120006
5.
Ghojel
,
J. I.
,
2010
, “
Review of the Development and Applications of the Wiebe Function: A Tribute to the Contribution of Ivan Wiebe to Engine Research
,”
Int. J. Engine Res.
,
11
(
4
), pp.
297
312
.10.1243/14680874JER06510
6.
Yeliana
,
Y.
,
Cooney
,
C.
,
Worm
,
J.
,
Michalek
,
D.
, and
Naber
,
J.
,
2008
, “
Wiebe Function Parameter Determination for Mass Fraction Burn Calculation in an Ethanol-Gasoline Fuelled SI Engine
,”
J. KONES
,
15
(
3
), pp.
567
574
.https://bibliotekanauki.pl/articles/949481.pdf
7.
Brayek
,
M.
,
Driss
,
Z.
, and
Jemni
,
M. A.
,
2023
, “
Optimization of the Wiebe Function Parameters and a New Function for the Filling Coefficient for Dual-Fuel Engines
,”
Recent Trends in Wave Mechanics and Vibrations
,
Z.
Dimitrovová
,
P.
Biswas
,
R.
Gonçalves
, and
T.
Silva
, eds.,
Springer International Publishing
,
Cham
, pp.
1196
1206
.
8.
Dimitrovová
,
Z.
,
Biswas
,
P.
,
Gonçalves
,
R.
, and
Silva
,
T.
,
2022
, “
Optimization of the Wiebe Function Parameters and a New Function for the Filling Coefficient for Dual-Fuel Engines
,”
Mechanisms and Machine Science
, Vol.
125
,
Springer International Publishing AG
,
Switzerland
, pp.
1196
1206
.
9.
Borg
,
J.
, and
Alkidas
,
A.
,
2008
, “
Investigation of the Effects of Autoignition on the Heat Release Histories of a Knocking SI Engine Using Wiebe Functions
,”
SAE
Paper No. 2008-01-1088.10.4271/2008-01-1088
10.
Vakalis
,
S.
,
Caligiuri
,
C.
,
Moustakas
,
K.
,
Malamis
,
D.
,
Renzi
,
M.
, and
Baratieri
,
M.
,
2018
, “
Modeling the Emissions of a Dual Fuel Engine Coupled With a Biomass Gasifier—Supplementing the Wiebe Function
,”
Environ. Sci. Pollut. Res. Int.
,
25
(
36
), pp.
35866
35873
.10.1007/s11356-018-1647-5
11.
Yıldız
,
M.
, and
Albayrak Çeper
,
B.
,
2017
, “
Zero-Dimensional Single Zone Engine Modeling of an SI Engine Fuelled With Methane and Methane-Hydrogen Blend Using Single and Double Wiebe Function: A Comparative Study
,”
Int. J. Hydrogen Energy
,
42
(
40
), pp.
25756
25765
.10.1016/j.ijhydene.2017.07.016
12.
Bonatesta
,
F.
,
Waters
,
B.
, and
Shayler
,
P. J.
,
2010
, “
Burn Angles and Form Factors for Wiebe Function Fits to Mass Fraction Burned Curves of a Spark Ignition Engine With Variable Valve Timing
,”
Int. J. Engine Res.
,
11
(
2
), pp.
177
186
.10.1243/14680874JER05009
13.
Depcik
,
C.
,
Alam
,
S. S.
,
Madani
,
S.
,
Ahlgren
,
N.
,
McDaniel
,
E.
,
Burugupally
,
S. P.
, and
Hobeck
,
J. D.
,
2023
, “
Determination of a Heat Transfer Correlation for Small Internal Combustion Engines
,”
Appl. Therm. Eng.
,
228
, p.
120524
.10.1016/j.applthermaleng.2023.120524
14.
Torregrosa
,
A. J.
,
Broatch
,
A.
,
Olmeda
,
P.
, and
Aceros
,
S.
,
2021
, “
Numerical Estimation of Wiebe Function Parameters Using Artificial Neural Networks in SI Engine
,”
SAE
Paper No. 2021-01-0379.10.4271/2021-01-0379
15.
Alam
,
S. S.
,
Rosa
,
S. W.
,
Depcik
,
C.
,
Preetham Burugupally
,
S.
,
McDaniel
,
E.
, and
Hobeck
,
J. D.
,
2021
, “
Modification of the Wiebe Function for Methane-Air and Oxy-Methane-Based Spark-Ignition Engines
,”
Fuel
,
303
, p.
121218
.10.1016/j.fuel.2021.121218
16.
Wei
,
H.
,
Feng
,
D.
,
Shu
,
G.
,
Pan
,
M.
,
Guo
,
Y.
,
Gao
,
D.
, and
Li
,
W.
,
2014
, “
Experimental Investigation on the Combustion and Emissions Characteristics of 2-Methylfuran Gasoline Blend Fuel in Spark-Ignition Engine
,”
Appl. Energy
,
132
, pp.
317
324
.10.1016/j.apenergy.2014.07.009
17.
Maroa
,
S.
, and
Inambao
,
F.
,
2020
, “
The NOx Formation Routes
,”
Biodiesel, Combustion, Performance and Emissions Characteristics
,
S.
Maroa
, and
F.
Inambao
, eds.,
Springer International Publishing
,
Cham
, pp.
7
15
.
18.
Wei
,
H.
,
Zhu
,
T.
,
Shu
,
G.
,
Tan
,
L.
, and
Wang
,
Y.
,
2012
, “
Gasoline Engine Exhaust Gas Recirculation – A Review
,”
Appl. Energy
,
99
, pp.
534
544
.10.1016/j.apenergy.2012.05.011
19.
Tian
,
H.
,
Wang
,
J.
,
Zhang
,
R.
,
Wang
,
F.
,
Su
,
Y.
, and
Wang
,
Y.
,
2023
, “
Study on the Effect of Coupled Internal and External EGR on Homogeneous Charge Compression Ignition Under High Pressure Rise Rate
,”
Energies
,
17
(
1
), p.
175
.10.3390/en17010175
20.
Gong
,
J.
,
Yang
,
B.
,
Liu
,
L.
,
Liang
,
Y.
,
Zhang
,
Z.
, and
Zhang
,
F.
,
2021
, “
Effects of Internal/External EGR and Combustion Phase on Gasoline Compression Ignition at Low-Load Condition
,”
Appl. Math. Nonlinear Sci.
,
6
(
2
), pp.
411
426
.10.2478/amns.2021.1.00033
21.
Khoa
,
N. X.
, and
Lim
,
O.
,
2022
, “
A Review of the External and Internal Residual Exhaust Gas in the Internal Combustion Engine
,”
Energies
,
15
(
3
), p.
1208
.10.3390/en15031208
22.
Depcik
,
C.
,
Mattson
,
J.
, and
Alam
,
S. S.
,
2023
, “
Open-Source Energy, Entropy, and Exergy 0D Heat Release Model for Internal Combustion Engines
,”
Energies
,
16
(
6
), p.
2514
.10.3390/en16062514
23.
Alam
,
S. S.
, and
Depcik
,
C.
,
2019
, “
Adaptive Wiebe Function Parameters for a Port-Fuel Injected Hydrogen-Fueled Engine
,”
ASME
Paper No. IMECE2019-10031.10.1115/IMECE2019-10031
24.
Turns
,
S. R.
,
2000
,
An Introduction to Combustion: Concepts and Applications
,
2
nd ed.,
WCB/McGraw-Hill
, Boston, MA.
25.
Coronado
,
C. J. R.
,
Carvalho
,
J. A.
, Jr.
,
Andrade
,
J. C.
,
Cortez
,
E. V.
,
Carvalho
,
F. S.
,
Santos
,
J. C.
, and
Mendiburu
,
A. Z.
,
2012
, “
Flammability Limits: A Review With Emphasis on Ethanol for Aeronautical Applications and Description of the Experimental Procedure
,”
J. Hazard. Mater.
,
241–242
, pp.
32
54
.10.1016/j.jhazmat.2012.09.035
26.
McAllister
,
S.
,
Chen
,
J.-Y.
, and
Fernandez-Pello
,
A. C.
,
2011
,
Fundamentals of Combustion Processes
, 1st ed.,
Springer
,
New York
.
27.
Cashdollar
,
K. L.
,
Zlochower
,
I. A.
,
Green
,
G. M.
,
Thomas
,
R. A.
, and
Hertzberg
,
M.
,
2000
, “
Flammability of Methane, Propane, and Hydrogen Gases
,”
J. Loss Prev. Process Ind.
,
13
(
3–5
), pp.
327
340
.10.1016/S0950-4230(99)00037-6
28.
Speight
,
J. G.
,
2014
,
The Chemistry and Technology of Petroleum
, 5th ed., Vol.
137
,
CRC Press
, Milton, UK.
29.
Valenzuela
,
E. M.
,
Vázquez-Román
,
R.
,
Patel
,
S.
, and
Mannan
,
M. S.
,
2011
, “
Prediction Models for the Flash Point of Pure Components
,”
J. Loss Prev. Process Ind.
,
24
(
6
), pp.
753
757
.10.1016/j.jlp.2011.04.010
30.
Demirbas
,
A.
,
2008
, “
Biofuels Sources, Biofuel Policy, Biofuel Economy and Global Biofuel Projections
,”
Energy Convers. Manage.
,
49
(
8
), pp.
2106
2116
.10.1016/j.enconman.2008.02.020
31.
Glassman
,
I.
,
Yetter
,
R. A.
, and
Glumac
,
N. G.
,
2014
,
Combustion
, 5th ed.,
Academic Press
, Cambridge, MA.
32.
Verhelst
,
S.
,
Turner
,
J. W. G.
,
Sileghem
,
L.
, and
Vancoillie
,
J.
,
2019
, “
Methanol as a Fuel for Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
70
, pp.
43
88
.10.1016/j.pecs.2018.10.001
33.
Bavykin
,
D. V.
,
2008
,
Hydrogen as a Future Energy Carrier
, Vol.
38
(
10
),
A.
Zuttel
,
A.
Borgschulte
, and
L.
Schlapbach
, eds.,
Wiley-VCH
, Weinheim, Germany, pp.
1483
1483
.
34.
Skottene
,
M.
, and
Rian
,
K. E.
,
2007
, “
A Study of NOx Formation in Hydrogen Flames
,”
Int. J. Hydrogen Energy
,
32
(
15
), pp.
3572
3585
.10.1016/j.ijhydene.2007.02.038
35.
U.S. Environmental Protection Agency
,
2018
, “
Biofuels and the Environment: Second Triennial Report to Congress (Final Report, 2018)
,”
U.S. Environmental Protection Agency
,
Washington, DC
, Report No.
EPA/600/R-18/195
.https://cfpub.epa.gov/si/si_public_record_Report.cfm?Lab=IO&dirEntryId=341491
36.
Iliev
,
S.
,
2018
, “
Comparison of Ethanol and Methanol Blending With Gasoline Using Engine Simulation
,”
Biofuels: Challenges and Opportunities
,
IntechOpen
, London, UK.
37.
Iliev
,
S.
,
2015
, “
A Comparison of Ethanol and Methanol Blending With Gasoline Using a 1-D Engine Model
,”
Proc. Eng.
,
100
, pp.
1013
1022
.10.1016/j.proeng.2015.01.461
38.
Bae
,
C.
, and
Kim
,
J.
,
2017
, “
Alternative Fuels for Internal Combustion Engines
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3389
3413
.10.1016/j.proci.2016.09.009
39.
Depcik
,
C.
,
Cassady
,
T.
,
Collicott
,
B.
,
Burugupally
,
S. P.
,
Li
,
X.
,
Alam
,
S. S.
,
Arandia
,
J. R.
, and
Hobeck
,
J. D.
,
2020
, “
Comparison of Lithium-Ion Batteries, Hydrogen Fueled Combustion Engines, and a Hydrogen Fuel Cell in Powering a Small Unmanned Aerial Vehicle
,”
Energy Convers. Manage.
,
207
, p.
112514
.10.1016/j.enconman.2020.112514
40.
Deheri
,
C.
,
Acharya
,
S. K.
,
Thatoi
,
D. N.
, and
Mohanty
,
A. P.
,
2020
, “
A Review on Performance of Biogas and Hydrogen on Diesel Engine in Dual Fuel Mode
,”
Fuel
,
260
, p.
116337
.10.1016/j.fuel.2019.116337
41.
Rahman
,
M. M.
,
Hamada
,
K. I.
,
Noor
,
M. M.
,
Bakar
,
R. A.
,
Kadirgama
,
K.
, and
Maleque
,
M. A.
,
2010
, “
In-Cylinder Heat Transfer Characteristics of Hydrogen Fueled Engine: A Steady State Approach
,”
Am. J. Environ. Sci.
,
6
(
2
), pp.
124
129
.10.3844/ajessp.2010.124.129
42.
Bayraktar
,
H.
, and
Durgun
,
O.
,
2004
, “
Development of an Empirical Correlation for Combustion Durations in Spark Ignition Engines
,”
Energy Convers. Manage.
,
45
(
9–10
), pp.
1419
1431
.10.1016/j.enconman.2003.09.010
43.
Kumar
,
A.
,
Tirkey
,
J. V.
, and
Shukla
,
S. K.
,
2018
, “
Performance Investigation of Compression Ignition Engine Using Empirical Correlation for Burning Duration
,”
Therm. Sci.
,
22
(
3
), pp.
1311
1323
.10.2298/TSCI180125149K
44.
McAllister
,
S.
,
Chen
,
J.-Y.
, and
Fernandez-Pello
,
A. C.
,
2011
, “
Thermodynamics of Combustion
,”
Fundamentals of Combustion Processes
,
S.
McAllister
,
J.-Y.
Chen
, and
A. C.
Fernandez-Pello
, eds.,
Springer
,
New York
, pp.
15
47
.
45.
Jadidi
,
M.
,
Moghtadernejad
,
S.
, and
Dolatabadi
,
A.
,
2015
, “
A Comprehensive Review on Fluid Dynamics and Transport of Suspension/Liquid Droplets and Particles in High-Velocity Oxygen-Fuel (HVOF) Thermal Spray
,”
Coatings
,
5
(
4
), pp.
576
645
.10.3390/coatings5040576
46.
Law
,
C. K.
,
2006
,
Combustion Physics
, 1st ed.,
Cambridge University Press
, Cambridge, UK.
47.
Mendiburu
,
A. Z.
,
Lauermann
,
C. H.
,
Hayashi
,
T. C.
,
Mariños
,
D. J.
,
Rodrigues da Costa
,
R. B.
,
Coronado
,
C. J. R.
,
Roberts
,
J. J.
, and
de Carvalho
,
J. A.
,
2022
, “
Ethanol as a Renewable Biofuel: Combustion Characteristics and Application in Engines
,”
Energy
,
257
, p.
124688
.10.1016/j.energy.2022.124688
48.
Law
,
C. K.
,
Makino
,
A.
, and
Lu
,
T. F.
,
2006
, “
On the Off-Stoichiometric Peaking of Adiabatic Flame Temperature
,”
Combust. Flame
,
145
(
4
), pp.
808
819
.10.1016/j.combustflame.2006.01.009
49.
Yamin
,
J. A. A.
,
2006
, “
Comparative Study Using Hydrogen and Gasoline as Fuels: Combustion Duration Effect
,”
Int. J. Energy Res.
,
30
(
14
), pp.
1175
1187
.10.1002/er.1213
50.
Kumano
,
K.
, and
Yamaoka
,
S.
,
2014
, “
Analysis of Knocking Suppression Effect of Cooled EGR in Turbo-Charged Gasoline Engine
,”
SAE
Paper No. 2014-01-1217.10.4271/2014-01-1217
51.
Li
,
L.
,
Wang
,
T.
,
Duan
,
J.
, and
Sun
,
K.
,
2019
, “
Impact of Butanol Isomers and EGR on the Combustion Characteristics and Emissions of a SIDI Engine at Various Injection Timings
,”
Appl. Therm. Eng.
,
151
, pp.
417
430
.10.1016/j.applthermaleng.2019.01.082
52.
Shen
,
K.
,
Li
,
F.
,
Zhang
,
Z.
,
Sun
,
Y.
, and
Yin
,
C.
,
2017
, “
Effects of LP and HP Cooled EGR on Performance and Emissions in Turbocharged GDI Engine
,”
Appl. Therm. Eng.
,
125
, pp.
746
755
.10.1016/j.applthermaleng.2017.07.064
53.
Meng
,
S.
,
Han
,
Z.
,
Shi
,
Y.
,
Liu
,
W.
,
Huang
,
Y.
, and
Wu
,
Z.
,
2021
, “
Improving Combustion Performance of a Dedicated Range-Extender Engine With Refined Intake-Charging Characteristics and Cooled EGR
,”
SAE
Paper No. 2021-01-7001.10.4271/2021-01-7001
54.
Hu
,
E.
,
Huang
,
Z.
,
Liu
,
B.
,
Zheng
,
J.
, and
Gu
,
X.
,
2009
, “
Experimental Study on Combustion Characteristics of a Spark-Ignition Engine Fueled With Natural Gas–Hydrogen Blends Combining With EGR
,”
Int. J. Hydrogen Energy
,
34
(
2
), pp.
1035
1044
.10.1016/j.ijhydene.2008.11.030
55.
Lou
,
D.
,
Ren
,
Y.
,
Zhang
,
Y.
, and
Sun
,
X.
,
2020
, “
Study on the Effects of EGR and Spark Timing on the Combustion, Performance, and Emissions of a Stoichiometric Natural Gas Engine
,”
ACS Omega
,
5
(
41
), pp.
26763
26775
.10.1021/acsomega.0c03859
56.
Yin
,
X.
,
Li
,
W.
,
Zhang
,
W.
,
Lv
,
X.
,
Yang
,
B.
,
Wang
,
Y.
, and
Zeng
,
K.
,
2022
, “
Experimental Analysis of the EGR Rate and Temperature Impact on Combustion and Emissions Characteristics in a Heavy-Duty NG Engine
,”
Fuel
,
310
, p.
122394
.10.1016/j.fuel.2021.122394
57.
Yousufuddin
,
S.
,
2016
, “
Experimental Study on Combustion Duration and Performance Characteristics of a Hydrogen-Ethanol Dual Fueled Engine
,”
Int. J. Automot. Eng. Technol.
,
5
(
3
), pp.
85
101
.10.18245/ijaet.287175
58.
Chen
,
Z.
,
Wang
,
L.
, and
Zeng
,
K.
,
2019
, “
Comparative Study of Combustion Process and Cycle-by-Cycle Variations of Spark-Ignition Engine Fueled With Pure Methanol, Ethanol, and n-Butanol at Various Air–Fuel Ratios
,”
Fuel
,
254
, p.
115683
.10.1016/j.fuel.2019.115683
59.
Zhen
,
X.
,
Li
,
X.
,
Wang
,
Y.
,
Liu
,
D.
,
Tian
,
Z.
, and
Wang
,
Y.
,
2020
, “
Effects of the Initial Flame Kernel Radius and EGR Rate on the Performance, Combustion, and Emission of High-Compression Spark-Ignition Methanol Engine
,”
Fuel
,
262
, p.
116633
.10.1016/j.fuel.2019.116633
60.
Gong
,
C.
,
Li
,
Z.
,
Chen
,
Y.
,
Liu
,
J.
,
Liu
,
F.
, and
Han
,
Y.
,
2019
, “
Influence of Ignition Timing on Combustion and Emissions of a Spark-Ignition Methanol Engine With Added Hydrogen Under Lean-Burn Conditions
,”
Fuel
,
235
, pp.
227
238
.10.1016/j.fuel.2018.07.097
61.
Luo
,
Q.
, and
Sun
,
B.
,
2018
, “
Experiments on the Effect of Engine Speed, Load, Equivalence Ratio, Spark Timing, and Coolant Temperature on the Energy Balance of a Turbocharged Hydrogen Engine
,”
Energy Convers. Manage.
,
162
, pp.
1
12
.10.1016/j.enconman.2017.12.051
62.
Karim
,
G. A.
,
Wierzba
,
I.
, and
Al-Alousi
,
Y.
,
1996
, “
Methane-Hydrogen Mixtures as Fuels
,”
Int. J. Hydrogen Energy
,
21
(
7
), pp.
625
631
.10.1016/0360-3199(95)00134-4
63.
Bayraktar
,
H.
, and
Durgun
,
O.
,
2005
, “
Investigating the Effects of LPG on Spark Ignition Engine Combustion and Performance
,”
Energy Convers. Manage.
,
46
(
13–14
), pp.
2317
2333
.10.1016/j.enconman.2004.09.012
64.
Baigmohammadi
,
M.
,
Tabejamaat
,
S.
, and
Faghani-Lamraski
,
M.
,
2017
, “
Experimental Study on the Effects of Mixture Flow Rate, Equivalence Ratio, Oxygen Enhancement, and Geometrical Parameters on Propane-Air Premixed Flame Dynamics in Non-Adiabatic Meso-Scale Reactors
,”
Energy
,
121
, pp.
657
675
.10.1016/j.energy.2017.01.057
65.
Belmont
,
E. L.
, and
Ellzey
,
J. L.
,
2014
, “
Lean Heptane and Propane Combustion in a Non-Catalytic Parallel-Plate Counter-Flow Reactor
,”
Combust. Flame
,
161
(
4
), pp.
1055
1062
.10.1016/j.combustflame.2013.10.026
66.
Park
,
S.-K.
,
Lee
,
J.
,
Kim
,
K.
,
Park
,
S.
, and
Kim
,
H.-M.
,
2015
, “
Experimental Characterization of Cooled EGR in a 878 Gasoline Direct Injection Engine for Reducing Fuel Consumption and Nitrogen Oxide Emission
,”
Heat Mass Transfer
,
51
(
11
), pp.
1639
1651
.10.1007/s00231-015-1633-0
67.
Rohwer
,
J.
,
Han
,
T.
,
Shah
,
A.
, and
Rockstroh
,
T.
,
2023
, “
Investigations Into EGR Dilution Tolerance in a Pre-Chamber Ignited GDI Engine
,”
Int. J. Engine Res.
,
24
(
3
), pp.
1200
1222
.10.1177/14680874221084777
68.
Neame
,
G. R.
,
Gardiner
,
D. P.
,
Mallory
,
R. W.
,
Rao
,
V. K.
,
Bardon
,
M. F.
, and
Battista
,
V.
,
1995
, “
Improving the Fuel Economy of stoichiometrically fueled S.I. Engines by Means of EGR and Enhanced Ignition—A Comparison of Gasoline, Methanol, and Natural Gas
,”
SAE Trans.
, 104, pp.
1062
1076
.http://www.jstor.org/stable/44615150
69.
Cha
,
J.
,
Kwon
,
J.
,
Cho
,
Y.
, and
Park
,
S.
,
2001
, “
The Effect of Exhaust Gas Recirculation (EGR) on Combustion Stability, Engine Performance, and Exhaust Emissions in a Gasoline Engine
,”
KSME Int. J.
,
15
(
10
), pp.
1442
1450
.10.1007/BF03185686
70.
De Simio
,
L.
,
Gambino
,
M.
, and
Iannaccone
,
S.
,
2019
, “
Effects of EGR on Engines Fueled With Natural Gas and Natural Gas/Hydrogen Blends
,”
Natural Gas Engines: For 894 Transportation and Power Generation
,
K. K.
Srinivasan
,
A. K.
Agarwal
,
S. R.
Krishnan
, and
V.
Mulone
, eds.,
Springer
,
Singapore
, pp.
143
168
.
71.
Sejun
,
L.
,
Ozaki
,
K.
,
Sako
,
T.
, and
Iida
,
N.
,
2015
, “
A Potentiality of Dedicated EGR System for Improving Thermal Efficiency in Natural Gas SI Engines
,”
Int. J. Automot. Eng.
,
6
(
1
), pp.
15
22
.10.20485/jsaeijae.6.1_15
72.
Singh
,
I.
,
Güdden
,
A.
,
Raut
,
A.
,
Dhongde
,
A.
,
Emran
,
A.
,
Sharma
,
V.
, and
Wagh
,
S.
,
2024
, “
Experimental and Numerical Investigation of a Single-Cylinder Methanol Port-Fuel Injected Spark Ignition Engine for Heavy-Duty Applications
,”
SAE
Paper No. 2024-26-0072.10.4271/2024-26-0072
73.
Rufino
,
C. H.
,
dos Santos
,
L. R.
,
Sbampato
,
M. E.
,
Teixeira Lacava
,
P.
,
Peñaranda Mendoza
,
A.
,
Martelli
,
A. L.
, and
Weissinger
,
F. F.
,
2023
, “
Flame Morphology of Hydrous Ethanol Combustion Under EGR Dilution and Port Fuel Injection in a Spark Ignition Optical Engine
,”
SAE
Paper No. 2022-36-0041.10.4271/2022-36-0041
74.
Kar
,
T.
,
Fosudo
,
T.
,
Marchese
,
A.
,
Windom
,
B.
, and
Olsen
,
D.
,
2022
, “
Effect of Fuel Composition and EGR on Spark-Ignited Engine Combustion With LPG Fueling: Experimental and Numerical Investigation
,”
Fuel
,
327
, p.
125221
.10.1016/j.fuel.2022.125221
75.
Gao
,
W.
,
Fu
,
Z.
,
Li
,
Y.
,
Li
,
Y.
, and
Zou
,
J.
,
2022
, “
Progress of Performance, Emission, and Technical Measures of Hydrogen Fuel Internal-Combustion Engines
,”
Energies
,
15
(
19
), p.
7401
.10.3390/en15197401
76.
Stone
,
R.
,
1992
, “
Compression Ignition Engines
,”
Introduction to Internal Combustion Engines
,
R.
Stone
, ed.,
Macmillan Education UK
, London, UK, pp.
180
230
.
77.
Stone
,
R.
,
1993
, “
Introduction to Internal Combustion Engines
,” SAE International,
Warrendale, PA
.
78.
Giacomazzi
,
E.
,
Troiani
,
G.
,
Di Nardo
,
A.
,
Calchetti
,
G.
,
Cecere
,
D.
,
Messina
,
G.
, and
Carpenella
,
S.
,
2023
, “
Hydrogen Combustion: Features and Barriers to Its Exploitation in the Energy Transition
,”
Energies
,
16
(
20
), p.
7174
.10.3390/en16207174
79.
Stępień
,
Z.
,
2021
, “
A Comprehensive Overview of Hydrogen-Fueled Internal Combustion Engines: Achievements and Future Challenges
,”
Energies
,
14
(
20
), pp.
6504
6516
.10.3390/en14206504
80.
Irimescu
,
A.
,
Cecere
,
G.
, and
Sementa
,
P.
,
2022
, “
Combustion Phasing Indicators for Optimized Spark Timing Settings for Methane-Hydrogen Powered Small Size Engines
,”
SAE
Paper No. 2022-01-0603.10.4271/2022-01-0603
81.
Çeper
,
B. A.
,
2012
, “
Use of Hydrogen-Methane Blends in Internal Combustion Engines
,”
Hydrogen Energy: Challenges and Perspectives
,
D.
Minić
, ed.,
IntechOpen
, London, UK, p.
180
.
82.
Molina
,
S.
,
Novella
,
R.
,
Gomez-Soriano
,
J.
, and
Olcina-Girona
,
M.
,
2022
, “
Experimental Evaluation of Methane- Hydrogen Mixtures for Enabling Stable Lean Combustion in Spark-Ignition Engines for Automotive Applications
,”
SAE
Paper No. 2022-01-0471.10.4271/2022-01-0471
83.
Panthi
,
N.
,
Chang
,
J.
,
AlRamadan
,
A.
, and
Magnotti
,
G.
,
2023
, “
Experimental Investigations of Methane-Hydrogen Blended Combustion in a Heavy-Duty Optical Diesel Engine Converted to Spark Ignition Operation
,”
SAE
Paper No. 2023-01-0289.10.4271/2023-01-0289
You do not currently have access to this content.