Abstract

This paper presents a test rig for evaluation of gas thrust foil bearings (GTFBs) and details measurements of load capacity conducted with a commercial GTFB comprising a single 360 deg, 0.127 mm thick top foil divided into six continuous arc segments with a formed taper of 0.102 mm. Coated with Teflon®, the top foil rests on a stack of shims above six underspring structures, each comprising three strips of bump foils, 0.102 mm thick. Measurements include the applied static load and break-away torque, rotor speed, bearing axial displacements at three locations 120 deg apart, the flow of a cooling stream, and temperatures in and out of the bearing. Static load tests produce the underspring deformation and a dry-sliding friction coefficient f ∼ 0.12. The underspring is rather flexible though quickly hardening for specific load (P*) > 25 kN/m2 to reach an ultimate deformation of ∼0.320 mm. Measurements at 30 krpm (OD surface speed = 111 m/s) and increasing static loads produce bearing displacements that parallel the displacements without shaft rotation. Most importantly, the difference between displacements approaches ∼0.060 mm for P* > 45 kN/m2. The test bearing operated safely to P* = 90 kN/m2 and failed at P* = 120 kN/m2. When heavily loaded, the GTFB is significantly stiffer than when lightly loaded. Designed for easiness of installation and operation, the test bearing demonstrated a stable and repeatable performance with likely a uniform gap or film thickness even for the largest loads applied.

References

1.
Blok
,
H.
, and
vanRossum
,
J. J.
,
1953
, “
The Foil Bearing—A New Departure in Hydrodynamic Lubrication
,”
Lubr. Eng.
,
9
(
6
), pp.
316
320
.
2.
Agrawal
,
G. L.
,
1997
, “
Foil Air/Gas Bearing Technology—An Overview
,”
ASME
Paper No. 97-GT-347.10.1115/97-GT-347
3.
DellaCorte
,
C.
,
Radil
,
K. C.
,
Bruckner
,
R. J.
, and
Howard
,
S. A.
,
2008
, “
Design, Fabrication, and Performance of Open Source Generation I and II Compliant Hydrodynamic Gas Foil Bearings
,”
STLE Tribol. Trans.
,
51
(
3
), pp.
254
264
.10.1080/10402000701772579
4.
Samanta
,
P.
,
Murmu
,
N. C.
, and
Khonsari
,
M. M.
,
2019
, “
The Evolution of Foil Bearing Technology
,”
Tribol. Int.
,
135
, pp.
305
323
.10.1016/j.triboint.2019.03.021
5.
Zhou
,
Q.
,
Zhang
,
Y.
, and
Hou
,
Y.
,
2021
, “
Research Subjects and Hot Topics of Foil Bearings Performance in Recent Twenty Years: Analysis and Prediction
,”
Forsch. Ingenieurwes.
,
85
(
4
), pp.
1029
1042
.10.1007/s10010-021-00565-9
6.
Pattnayak
,
M. R.
,
Ganai
,
P.
,
Pandey
,
R. K.
,
Dutt
,
J. K.
, and
Fillon
,
M.
,
2022
, “
An Overview and Assessment on Aerodynamic Journal Bearings With Important Findings and Scope for Explorations
,”
Tribol. Int.
,
174
(
10
), p.
107778
.10.1016/j.triboint.2022.107778
7.
Dykas
,
B.
,
Bruckner
,
R.
,
DellaCorte
,
C.
,
Edmonds
,
B.
, and
Prahl
,
J.
,
2009
, “
Design, Fabrication, and Performance of Foil Gas Thrust Bearings for Microturbomachinery Applications
,”
ASME J. Eng. Gas Turbines Power
,
131
(
1
), p.
012301
.10.1115/1.2966418
8.
Bruckner
,
R. J.
,
2004
, “
Simulation and Modeling of the Hydrodynamic, Thermal and Structural Behavior of Foil Thrust Bearings
,”
Ph.D. dissertation
,
Case Western Reserve University
,
Cleveland, OH
.https://etd.ohiolink.edu/acprod/odb_etd/ws/send_file/send?accession=case1089304186&disposition=attachment
9.
Dykas
,
B.
,
2006
, “
Factors Influencing the Performance of Foil Gas Thrust Bearings for Oil Free Turbomachinery Applications
,”
Ph.D. dissertation
,
Case Western Reserve University
,
Cleveland, OH
.https://www.researchgate.net/publication/282857790_Factors_Influencing_the_Performance_of_Foil_Gas_Thrust_Bearings_for_Oil-Free_Turbomachinery_Applications
10.
Dickman
,
J. R.
,
2010
, “
An Investigation of Gas Foil Thrust Bearing Performance and Its Influencing Factors
,”
M.S. thesis
,
Case Western Reserve University
,
Cleveland, OH
.http://rave.ohiolink.edu/etdc/view?acc_num=case1270153301
11.
Stahl
,
B. J.
,
2012
, “
Thermal Stability and Performance of Foil Thrust Bearings
,”
M.S. thesis
,
Case Western Reserve University
,
Cleveland, OH
.http://rave.ohiolink.edu/etdc/view?acc_num=case1333722754
12.
Lee
,
D.
, and
Kim
,
D.
,
2011
, “
Three-Dimensional Thermohydrodynamic Analyses of Rayleigh Step Air Foil Thrust Bearing With Radially Arranged Bump Foils
,”
Tribol. Trans.
,
54
(
3
), pp.
432
448
.10.1080/10402004.2011.556314
13.
Balducchi
,
F.
,
Arghir
,
M.
,
Gauthier
,
R.
, and
Renard
,
E.
,
2013
, “
Experimental Analysis of the Start-Up Torque of a Mildly Loaded Foil Thrust Bearing
,”
ASME J. Tribol.
,
135
(
3
), p.
031702
.10.1115/1.4024211
14.
Balducchi
,
F.
,
Arghir
,
M.
, and
Gauthier
,
R.
,
2015
, “
Experimental Analysis of the Dynamic Characteristics of a Foil Thrust Bearing
,”
ASME J. Tribol.
,
137
(
2
), pp.
1
9
.10.1115/1.4029643
15.
Kim
,
T. H.
,
Lee
,
T. W.
,
Park
,
M. S.
,
Park
,
J.
,
Kim
,
J.
, and
Jeong
,
J.
,
2015
, “
Experimental Study on the Load Carrying Performance and Driving Torque of Gas Foil Thrust Bearings
,”
J. Korean Soc. Tribol. Lubr. Eng.
,
31
(
4
), pp.
141
147
.10.9725/kstle.2015.31.4.141
16.
Kim
,
T. H.
,
Park
,
M.
, and
Lee
,
T. W.
,
2017
, “
Design Optimization of Gas Foil Thrust Bearings for Maximum Load Capacity
,”
ASME J. Tribol.
,
139
(
3
), p.
031705
.10.1115/1.4034616
17.
Liu
,
X.
,
Li
,
C.
,
Du
,
J.
, and
Nan
,
G. T.
,
2021
, “
Thermal Characteristics Study of the Bump Foil Thrust Gas Bearing
,”
Appl. Sci.
,
11
(
9
), p.
4311
.10.3390/app11094311
18.
Wilkes
,
J.
,
Cater
,
R.
,
Swanson
,
E.
,
Passmore
,
K.
, and
Brady
,
J.
,
2022
, “
The Influence of Ambient Pressure on the Measured Load Capacity of Bump-Foil and Spiral-Groove Gas Thrust Bearings at Ambient Pressures up to 69 Bar on a Novel High-Pressure Gas Bearing Test Rig
,”
ASME J. Eng. Gas Turbines Power
,
144
(
6
), p.
0611003
.10.1115/1.4053715
19.
Cable
,
T. A.
, and
San Andrés
,
L.
,
2018
, “
On the Design, Manufacture, and Premature Failure of a Metal Mesh Foil Thrust Bearing—How Concepts That Work on Paper, Actually Do Not
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
121007
.10.1115/1.4041137
20.
Cable
,
T. A.
,
2020
, “
Experiments and Predictions With a Foil Thrust Bearing Supported by Metal Mesh Screen
,”
Ph.D. dissertation
,
Mechanical Engineering, Texas A&M University
,
College Station, TX
.https://rotorlab.tamu.edu/TRIBGROUP/TRC_reports_files/TRC-B&C-01-20%20Thurst%20Foil%20Bearing.pdf
21.
Wade
,
J. D.
,
Lubell
,
D. R.
, and
Weissert
,
D.
,
2009
, “
Successful Oil-Free Version of a Gas Compressor Through Integrated Design of Foil Bearing
,”
ASME
Paper No. GT2008-50349.10.1115/GT2008-50349
22.
Li
,
C.
,
Du
,
J.
,
Li
,
J.
,
Xu
,
Z.
, and
Zhao
,
C.
,
2023
, “
Investigations on the Load Capacity of Multilayer Foil Thrust Bearing Based on an Updated Complete Model
,”
ASME J. Tribol.
,
145
(
2
), p.
021202
.10.1115/1.4055130
23.
San Andrés
,
L.
,
Phillips
,
S.
, and
Childs
,
D.
,
2017
, “
A Water Lubricated Hybrid Thrust Bearing: Measurements and Predictions of Static Load Performance
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022506
.10.1115/1.4034042
24.
San Andrés
,
L.
, and
Norsworthy
,
J.
,
2016
, “
Structural and Rotordynamic Force Coefficients of a Shimmed Bump Foil Bearing: An Assessment of a Simple Engineering Practice
,”
ASME J. Eng. Gas Turbines Power
,
138
(
1
), p.
012502
.10.1115/1.4031238
25.
San Andrés
,
L.
, and
Jung
,
W.
,
2018
, “
Evaluation of Coated Top Foil Bearings: Dry Friction, Drag Torque, and Dynamic Force Coefficients
,”
ASME
Paper No. GT2018-75595.10.1115/GT2018-75595
26.
Samanta
,
P.
, and
Khonsari
,
M. M.
,
2018
, “
The Limiting Load-Carrying Capacity of Foil Thrust Bearings
,”
Proc. Inst. Mech. Eng., Part J
,
232
(
8
), pp.
1046
1052
.10.1177/1350650117747160
27.
San Andrés
,
L.
,
2010
, “
Gas Film Lubrication
,” Modern Lubrication Theory, Notes 15, Texas A&M University Digital Libraries, College Station, TX, accessed Nov. 2022, http://oaktrust.library.tamu.edu/handle/1969.1/93197
You do not currently have access to this content.