Abstract

Distributed combustion systems have shown the potential to reduce emissions as well as increase load and fuel flexibility. A characteristic feature of such systems is a reacting jet in crossflow, which exhibits complex vortical structures. In this paper, a generic combustion chamber with elliptic reacting jets in crossflow is examined, operating under lean-premixed conditions at elevated pressure and exhibiting high-frequency transverse mode shapes. It can be seen that depending on the orientation of the elliptical shape of the jet to the crossflow, thermoacoustic modes can be suppressed. A multidimensional fast Fourier transform shows that low aspect ratios (major axis of the jet aligned with the crossflow) result in the mixed 1L1T mode of first longitudinal and first transverse structure, while this mode disappears at high aspect ratios. To get a more detailed insight into the different vortex systems of the various aspect ratios, dynamic mode decomposition is applied. This modal decomposition technique reveals for low aspect ratios a shear layer mode that oscillates at a frequency close to the acoustic mixed mode. For this configuration, a mode representing a flapping motion is also identified. For high aspect ratios, the shear layer vortex increases its frequency and a higher-frequent mode appears in the acoustic spectrum.

References

1.
Polifke
,
W.
,
2004
, “
Combustion Instabilities
,”
Advances in Aeroacoustics and Applications
,
J.
Anthoine
, and
A.
Hirschberg
, eds.,
Von Karman Institute
,
Rhode-St-Genèse, BE
, Report No. VKI LS
2004
05
.
2.
Lieuwen
,
T. C.
,
1999
, “
Investigation of Combustion Instability Mechanisms in Premixed Gas Turbines
,”
Ph.D. thesis
,
Georgia Institute of Technology
,
Atlanta, GA
.https://www.researchgate.net/publication/27535682_Investigation_of_combustion_instability_mechanisms_in_premixed_gas_turbines
3.
Rayleigh
,
J. W. S.
,
1878
, “
The Explanation of Certain Acoustical Phenomena
,”
Nature
,
18
(
455
), pp.
319
321
.10.1038/018319a0
4.
Huang
,
Y.
,
Sung
,
H.
,
Hsieh
,
S.
, and
Yang
,
V.
,
2003
, “
Large-Eddy Simulation of Combustion Dynamics of Lean-Premixed Swirl-Stabilized Combustor
,”
J. Propul. Power
,
19
(
5
), pp.
782
794
.10.2514/2.6194
5.
Huang
,
Y.
,
Wang
,
S.
, and
Yang
,
V.
,
2006
, “
Systematic Analysis of Lean-Premixed Swirl-Stabilized Combustion
,”
AIAA J.
,
44
(
4
), pp.
724
740
.10.2514/1.15382
6.
Schwing
,
J.
,
Grimm
,
F.
, and
Sattelmayer
,
T.
,
2012
, “
A Model for the Thermo-Acoustic Feedback of Transverse Acoustic Modes and Periodic Oscillations in Flame Position in Cylindrical Flame Tubes
,”
ASME
Paper No. GT2012-68775.10.1115/GT2012-68775
7.
Zellhuber
,
M.
,
Meraner
,
C.
,
Kulkarni
,
R.
,
Polifke
,
W.
, and
Schuermans
,
B.
,
2013
, “
Large Eddy Simulation of Flame Response to Transverse Acoustic Excitation in a Model Reheat Combustor
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
091508
.10.1115/1.4024940
8.
Zellhuber
,
M.
,
Schwing
,
J.
,
Schuermans
,
B.
,
Sattelmayer
,
T.
, and
Polifke
,
W.
,
2014
, “
Experimental and Numerical Investigation of Thermo-Acoustic Sources Related to High-Frequency Instabilities
,”
Int. J. Spray Combust. Dyn.
,
6
(
1
), pp.
1
34
.10.1260/1756-8277.6.1.1
9.
Méry
,
Y.
,
2017
, “
Impact of Heat Release Global Fluctuations and Flame Motion on Transverse Acoustic Wave Stability
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3889
3898
.10.1016/j.proci.2016.08.009
10.
Méry
,
Y.
,
2018
, “
Dynamical Response of a Perfectly Premixed Flame and Limit Behavior for High Power Density Systems
,”
Combust. Flame
,
192
, pp.
410
425
.10.1016/j.combustflame.2018.02.007
11.
Hummel
,
T.
,
Berger
,
F.
,
Hertweck
,
M.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2017
, “
High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors—Part II: Modeling and Analysis
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
071502
.10.1115/1.4035592
12.
Berger
,
F. M.
,
Hummel
,
T.
,
Hertweck
,
M.
,
Kaufmann
,
J.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2017
, “
High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors—Part I: Experimental Investigation of Local Flame Response
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
071501
.10.1115/1.4035591
13.
Sharifi
,
V.
,
Kempf
,
A. M.
, and
Beck
,
C.
,
2019
, “
Large-Eddy Simulation of Acoustic Flame Response to High-Frequency Transverse Excitations
,”
AIAA J.
,
57
(
1
), pp.
327
340
.10.2514/1.J056818
14.
Sharifi
,
V.
,
Beck
,
C.
,
Janus
,
B.
, and
Kempf
,
A. M.
,
2021
, “
Design and Testing of a High Frequency Thermoacoustic Combustion Experiment
,”
AIAA J.
, 59(8), pp.
1
17
.10.2514/1.J060072
15.
O'Connor
,
J.
,
2022
, “
Understanding the Role of Flow Dynamics in Thermoacoustic Combustion Instability
,”
Proc. Combust. Inst.
, 39(4), pp.
4583
4610
.10.1016/j.proci.2022.07.115
16.
Hemchandra
,
S.
,
Shanbhogue
,
S.
,
Hong
,
S.
, and
Ghoniem
,
A. F.
,
2018
, “
Role of Hydrodynamic Shear Layer Stability in Driving Combustion Instability in a Premixed Propane/Air Backward Facing Step Combustor
,”
Phys. Rev. Fluids.
,
3
(
6
), p. 063201.10.1103/PhysRevFluids.3.063201
17.
O'Connor
,
J.
, and
Lieuwen
,
T.
,
2012
, “
Further Characterization of the Disturbance Field in a Transversely Excited Swirl-Stabilized Flame
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
011501
.10.1115/1.4004186
18.
Karmarkar
,
A.
,
Gupta
,
S.
,
Boxx
,
I.
,
Hemchandra
,
S.
, and
O'Connor
,
J.
,
2022
, “
Impact of Precessing Vortex Core Dynamics on the Thermoacoustic Instabilities in a Swirl-Stabilized Combustor
,”
J. Fluid Mech.
,
946
, p.
A36
.10.1017/jfm.2022.610
19.
Fric
,
T.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.10.1017/S0022112094003800
20.
Kelso
,
R. M.
,
Lim
,
T. T.
, and
Perry
,
A. E.
,
1996
, “
An Experimental Study of Round Jets in Cross-Flow
,”
J. Fluid Mech.
,
306
, pp.
111
144
.10.1017/S0022112096001255
21.
Tao
,
C.
, and
Zhou
,
H.
,
2020
, “
Correlation Analysis of Oxy-Fuel Jet in Cross-Flow on Thermoacoustic Instability in a Model Gas Turbine Combustor
,”
Aerosp. Sci. Technol.
,
106
, p.
106184
.10.1016/j.ast.2020.106184
22.
Chu
,
B. T.
,
1965
, “
On the Energy Transfer to Small Disturbances in Fluid Flow (Part 1)
,”
Acta Mech.
,
1
(
3
), pp.
215
234
.10.1007/BF01387235
23.
Nicoud
,
F.
, and
Poinsot
,
T.
,
2005
, “Thermoacoustic Instabilities: Should the Rayleigh Criterion Be Extended to Include Entropy Changes?”
Combust. Flame
,
142
(
1–2
), pp.
153
159
.10.1016/j.combustflame.2005.02.013
24.
Brear
,
M. J.
,
Nicoud
,
F.
,
Talei
,
M.
,
Giauque
,
A.
, and
Hawkes
,
E. R.
,
2012
, “
Disturbance Energy Transport and Sound Production in Gaseous Combustion
,”
J. Fluid Mech.
,
707
, pp.
53
73
.10.1017/jfm.2012.264
25.
Crow
,
S. C.
, and
Champagne
,
F. H.
,
1971
, “
Orderly Structure in Jet Turbulence
,”
J. Fluid Mech.
,
48
(
3
), pp.
547
591
.10.1017/S0022112071001745
26.
Brancher
,
P.
,
Chomaz
,
J. M.
, and
Huerre
,
P.
,
1994
, “
Direct Numerical Simulations of Round Jets: Vortex Induction and Side Jets
,”
Phys. Fluids
,
6
(
5
), pp.
1768
1774
.10.1063/1.868238
27.
Hussain
,
F.
, and
Husain
,
H. S.
,
1989
, “
Elliptic Jets. Part 1. Characteristics of Unexcited and Excited Jets
,”
J. Fluid Mech.
,
208
, pp.
257
320
.10.1017/S0022112089002843
28.
Lim
,
T. T.
,
New
,
T. H.
, and
Luo
,
S. C.
,
2001
, “
On the Development of Large-Scale Structures of a Jet Normal to a Cross Flow
,”
Phys. Fluids
,
13
(
3
), pp.
770
775
.10.1063/1.1347960
29.
New
,
T. H.
,
Lim
,
T. T.
, and
Luo
,
S. C.
,
2006
, “
Effects of Jet Velocity Profiles on a Round Jet in Cross-Flow
,”
Exp. Fluids
,
40
(
6
), pp.
859
875
.10.1007/s00348-006-0124-y
30.
New
,
T. H.
,
Lim
,
T. T.
, and
Luo
,
S. C.
,
2003
, “
Elliptic Jets in Cross-Flow
,”
J. Fluid Mech.
,
494
, pp.
119
140
.10.1017/S0022112003005925
31.
New
,
T. H.
,
Lim
,
T. T.
, and
Luo
,
S. C.
,
2004
, “
A Flow Field Study of an Elliptic Jet in Cross Flow Using DPIV Technique
,”
Exp. Fluids
,
36
(
4
), pp.
604
618
.10.1007/s00348-003-0733-7
32.
Nair
,
V.
,
Sirignano
,
M.
,
Emerson
,
B. L.
, and
Lieuwen
,
T. C.
,
2022
, “
Combustion and Flame Position Impacts on Shear Layer Dynamics in a Reacting Jet in Cross-Flow
,”
J. Fluid Mech.
,
942
, p.
A41
.10.1017/jfm.2022.387
33.
Nair
,
V.
,
Wilde
,
B.
,
Emerson
,
B.
, and
Lieuwen
,
T.
,
2019
, “
Shear Layer Dynamics in a Reacting Jet in Crossflow
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5173
5180
.10.1016/j.proci.2018.06.031
34.
Otero
,
M.
,
Genova
,
T.
,
Stiehl
,
B.
,
Morales
,
A. J.
,
Martin
,
S.
, and
Ahmed
,
K. A.
,
2022
, “
The Influence of Pressure on Flame-Flow Characteristics of a Reacting Jet in Crossflow
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p.
052301
.10.1115/1.4051741
35.
Megerian
,
S.
,
Davitian
,
J.
,
De B. Alves
,
L. S.
, and
Karagozian
,
A. R.
,
2007
, “
Transverse-Jet Shear-Layer Instabilities—Part 1: Experimental Studies
,”
J. Fluid Mech.
,
593
, pp.
93
129
.10.1017/S0022112007008385
36.
Strzelecki
,
A.
,
Gajan
,
P.
,
Gicquel
,
L.
, and
Michel
,
B.
,
2009
, “
Experimental Investigation of the Jets in Crossflow: Nonswirling Flow Case
,”
AIAA J.
,
47
(
5
), pp.
1079
1089
.10.2514/1.34781
37.
Lammel
,
O.
,
Schütz
,
H.
,
Schmitz
,
G.
,
Lückerath
,
R.
,
Stöhr
,
M.
,
Noll
,
B.
,
Aigner
,
M.
,
Hase
,
M.
, and
Krebs
,
W.
,
2010
, “
FLOX ® Combustion at High Power Density and High Flame Temperatures
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p. 121503.10.1115/1.4001825
38.
Poinsot
,
T.
, and
Lele
,
S. K.
,
1992
, “
Boundary Conditions for "Direct Simulation of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.10.1016/0021-9991(92)90046-2
39.
Polifke
,
W.
,
2007
, “
System Modelling and Stability Analysis
,”
Basics of Aero-Acoustics and Thermo-Acoustics
,
Von Karman Institute
,
Rhode-St-Genèse, Belgium
, Report No. VKI LS
2007
02
.
40.
S. I. D. Software
,
2022
,
Simcenter STAR-CCM+
,
Siemens
,
Leuven, Belgium
.
41.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
42.
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.10.1080/00102200008935814
43.
Bradley
,
D.
, and
Lau
,
A. K. C.
,
1990
, “
The Mathematical Modelling of Premixed Turbulent Combustion
,”
Pure Appl. Chem.
,
62
(
5
), pp.
803
814
.10.1351/pac199062050803
44.
Zimont
,
V. A.
,
Polifke
,
W.
,
Bettelini
,
M.
, and
Weisenstein
,
W.
,
1998
, “
An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure
,”
ASME J. Eng. Gas Turbines Power
,
120
(
3
), pp.
526
532
.10.1115/1.2818178
45.
Tay-Wo-Chong
,
L.
,
Scarpato
,
A.
, and
Polifke
,
W.
,
2017
, “
LES Combustion Model With Stretch and Heat Loss Effects for Prediction of Premix Flame Characteristics and Dynamics
,”
ASME
Paper No. GT2017-63357.10.1115/GT2017-63357
46.
Mallouppas
,
G.
,
Goldin
,
G.
,
Zhang
,
Y.
,
Thakre
,
P.
, and
Rogerson
,
J.
,
2019
, “
Investigation of Flamelet Generated Manifold Reaction Source Term Closure Models Applied to an Industrial Gas Turbine
,”
ASME
Paper No. GT2019-90219.10.1115/GT2019-90219
47.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.10.1017/S0022112010001217
48.
Tu
,
J. H.
,
Rowley
,
C. W.
,
Luchtenburg
,
D. M.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2014
, “
On Dynamic Mode Decomposition: Theory and Applications
,”
J. Comput. Dyn.
,
1
(
2
), pp.
391
421
.10.3934/jcd.2014.1.391
49.
Quinlan
,
J. M.
, and
Zinn
,
B. T.
,
2014
, “
Transverse Combustion Instabilities: Modern Experimental Techniques and Analysis
,”
AIAA
Paper No. 2014-3682.10.2514/6.2014-3682
50.
Meyer
,
K. E.
,
Pedersen
,
J. M.
, and
Özcan
,
O.
,
2007
, “
A Turbulent Jet in Crossflow Analysed With Proper Orthogonal Decomposition
,”
J. Fluid Mech.
,
583
, pp.
199
227
.10.1017/S0022112007006143
51.
Nair
,
V.
,
2020
, “
Shear Layer Dynamics of a Reacting Jet in Vitiated Crossflow
,”
Ph.D. thesis
,
Georgia Institute of Technology
,
Atlanta, GA
.http://hdl.handle.net/1853/66005
52.
Zhang
,
L.
, and
Yang
,
V.
,
2017
, “
Flow Dynamics and Mixing of a Transverse Jet in Crossflow—Part II: Oscillating Crossflow
,”
ASME J. Eng. Gas Turbines Power
,
139
(
8
), p.
082602
.10.1115/1.4035809
53.
Leask
,
S. B.
, and
McDonell
,
V. G.
,
2019
, “
On the Physical Interpretation of Proper Orthogonal Decomposition and Dynamic Mode Decomposition for Liquid Injection
,” arXiv e-prints, arxiv.org/abs/1909.07576.https://www.researchgate.net/publication/335880505_On_the_Physical_Interpretation_of_Proper_Orthogonal_Decomposition_and_Dynamic_Mode_Decomposition_for_Liquid_Injection
You do not currently have access to this content.