Abstract

Lubricants experience harsh conditions which result in degradation of the oil. To imitate similar conditions, Mobil DTE 732, a common gas turbine lubricating oil, was subjected to high temperatures for an extended period of time, until thermal degradation occurred, indicated through the creation of coke. Samples were taken throughout this process, with the sample that was tested having been exposed for 78 h. Utilizing an endwall injector system, the samples were ignited behind reflected shock waves in the high-pressure shock tube (HPST) at Texas A&M University. The injector system utilizes the incident wave to increase the temperature of the lubricant past its vaporization temperature, thereby vaporizing the fuel prior to the arrival of the reflected shock. Using this system, the base Mobil DTE 732 and the 78-h sample produced from the coking test were tested at 1.06–1.58 atm and between 1171 and 1373 K. The ignition delay times (IDTs) of the samples were recorded utilizing pressure rise and hydroxyl chemiluminescence located in the sidewall of the shock tube. Upon the analysis of the results, there were negligible changes in the ignition behavior of the fuel, based on ignition delay time. However, changes in the combustion behavior were experienced, such as an absence of two-stage ignition and lower viscosity for the post-coke sample.

References

1.
Kurz
,
R.
,
Brun
,
K.
, and
Wollie
,
M.
,
2009
, “
Degradation Effects on Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
131
(
6
), p.
062401
.10.1115/1.3097135
2.
Kurz
,
R.
, and
Brun
,
K.
,
2001
, “
Degradation in Gas Turbine Systems
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
70
77
.10.1115/1.1340629
3.
Loomis
,
W. R.
,
1976
, “
Aircraft Engine Sump-Fire Studies
,”
NASA Aircraft Safety and Operating Problems Conference
, Hampton, VA, Oct. 18–20, 1976, pp.
443
456
.https://ntrs.nasa.gov/citations/19770011160
4.
Rosenlieb
,
J.
,
1973
, “
Aircraft Engine Sump Fire Mitigation
,” NASA, Washington, DC, Report No.
NASA-TR-121158
.https://ntrs.nasa.gov/citations/19730014164
5.
Feist
,
J. P.
,
Sollazzo
,
P. Y.
,
Berthier
,
S.
,
Charnley
,
B.
, and
Wells
,
J.
,
2012
, “
Application of an Industrial Sensor Coating System on a Rolls-Royce Jet Engine for Temperature Detection
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
012101
.10.1115/1.4007370
6.
Juárez
,
R.
,
2021
, “
Development of a Test Rig to Study the Lubricating Oil Degradation and Solid Deposit Formation Process at High Temperatures
,”
Master's thesis
,
Texas A&M University
,
College Station, TX
.https://hdl.handle.net/1969.1/195833
7.
Juárez
,
R.
,
Gutierrez
,
N.
, and
Petersen
,
E. L.
,
2023
, “
High-Temperature Degradation and Coking of Aircraft Gas Turbine Engine Lubricants
,”
AIAA
Paper No. 2023-1252.10.2514/6.2023-1252
8.
Juárez
,
R.
, and
Petersen
,
E. L.
,
2023
, “
Coking of Gas Turbine Lubrication Oils at Elevated Temperatures
,”
J. Global Power Propul. Soc.
,
7
, pp.
242
256
.10.33737/jgpps/168292
9.
Juárez
,
R.
, and
Petersen
,
E. L.
,
2024
, “
Changes in the Composition of Aircraft Lubricants Undergoing Thermal Breakdown
,”
AIAA
Paper No. 2024-2575.10.2514/6.2024-2575
10.
Petersen
,
E. L.
,
Mathieu
,
O.
,
Thomas
,
J. C.
,
Cooper
,
S. P.
,
Teitge
,
D. S.
,
Juárez
,
R.
,
Gutierrez
,
N.
, and
Mashuga
,
C. V.
,
2021
, “
Combustion and Oxidation of Lube Oils at Gas Turbine Conditions: Experimental Methods
,”
ASME
Paper No. GT2021-60319.10.1115/GT2021-60319
11.
Cooper
,
S. P.
,
Browne
,
Z. K.
,
Alturaifi
,
S. A.
,
Mathieu
,
O.
, and
Petersen
,
E. L.
,
2021
, “
Auto-Ignition of Gas Turbine Lubricating Oils in a Shock Tube Using Spray Injection
,”
ASME J. Eng. Gas Turbines Power
,
143
(
5
), p.
051008
.10.1115/1.4049484
12.
Cooper
,
S. P.
, and
Petersen
,
E. L.
,
2021
, “
High-Temperature Ignition Kinetics of Gas Turbine Lubricating Oils
,”
ASME J. Eng. Gas Turbines Power
,
143
(
11
), p.
111020
.10.1115/1.4051985
13.
Cooper
,
S. P.
,
2024
, “
High-Temperature Ignition Kinetics of Lubricating Oils
,”
Ph.D. dissertation
,
Texas A&M University
,
College Station, TX
.https://hdl.handle.net/1969.1/198793
14.
Abulail
,
M.
,
Sandberg
,
M. G.
,
Cooper
,
S. P.
, and
Petersen
,
E. L.
,
2024
, “
Ignition of Various Lubricating Oil Compositions Using a Shock Tube
,”
ASME J. Eng. Gas Turbines Power
,
146
(
3
), p.
031003
.10.1115/1.4063543
15.
Abulail
,
M.
,
Petersen
,
E. L.
,
Neal
,
C. J.
, and
Seal
,
S.
,
2024
, “
Ignition Delay Time Study of HTPB With Additives Using a Shock-Tube Endwall Injector System
,”
AIAA
Paper No. 2024-1643.10.2514/6.2024-1643
16.
Rebagay
,
R.
,
2017
, “
Heated Shock Tube Design and Characterization for Liquid Fuel Combustion Experiments
,”
Master's thesis
,
Texas A&M University
,
College Station, TX
.https://hdl.handle.net/1969.1/166024
17.
Hargis
,
J. W.
,
Cooper
,
S. P.
,
Mathieu
,
O.
,
Guo
,
B.
, and
Petersen
,
E. L.
,
2020
, “
Ignition-Delay Time Measurements of Heavy Hydrocarbons in an Aerosol Shock Tube
,”
AIAA
Paper No. 2020-2144.10.2514/6.2020-2144
18.
Hargis
,
J. W.
,
Cooper
,
S. P.
,
Mathieu
,
O.
,
Guo
,
B.
, and
Petersen
,
E. L.
,
2021
, “
High-Temperature Ignition Behavior of Conventional and GTL Fuels Using an Aerosol Shock Tube
,”
Combust. Flame
,
226
, pp.
490
504
.10.1016/j.combustflame.2020.12.030
19.
Niegemann
,
P.
,
Herzler
,
J.
,
Fikri
,
M.
, and
Schulz
,
C.
,
2020
, “
Studying the Influence of Single Droplets on Fuel/Air Ignition in a High-Pressure Shock Tube
,”
Rev. Sci. Instrum.
,
91
(
10
), p.
105107
.10.1063/5.0024614
20.
Petersen
,
E. L.
,
2009
, “
Interpreting Endwall and Sidewall Measurements in Shock-Tube Ignition Studies
,”
Combust. Sci. Technol.
,
181
(
9
), pp.
1123
1144
.10.1080/00102200902973323
21.
Morgan
,
D. L.
, and
Kobayashi
,
R.
,
1994
, “
Direct Vapor Pressure Measurements of Ten n-Alkanes m the 10-C28 Range
,”
Fluid Phase Equilib.
,
97
, pp.
211
242
.10.1016/0378-3812(94)85017-8
22.
Kuti
,
O. A.
,
Yang
,
S. Y.
,
Hourani
,
N.
,
Naser
,
N.
,
Roberts
,
W. L.
,
Chung
,
S. H.
, and
Sarathy
,
S. M.
,
2015
, “
A Fundamental Investigation Into the Relationship Between Lubricant Composition and Fuel Ignition Quality
,”
Fuel
,
160
, pp.
605
613
.10.1016/j.fuel.2015.08.026
23.
Wang
,
F. C.-Y.
, and
Zhang
,
L.
,
2007
, “
Chemical Composition of Group II Lubricant Oil Studied by High-Resolution Gas Chromatography and Comprehensive Two-Dimensional Gas Chromatography
,”
Energy Fuels
,
21
(
6
), pp.
3477
3483
.10.1021/ef700407c
24.
Davidson
,
D. F.
,
Haylett
,
D. R.
, and
Hanson
,
R. K.
,
2008
, “
Development of an Aerosol Shock Tube for Kinetic Studies of Low-Vapor-Pressure Fuels
,”
Combust. Flame
,
155
(
1–2
), pp.
108
117
.10.1016/j.combustflame.2008.01.006
You do not currently have access to this content.