Abstract

Considering the increasingly stringent targets for aircraft emissions, computational fluid dynamics (CFD) is becoming a viable tool for improving future aero-engine combustors. However, predicting pollutant formation remains challenging. In particular, directly solving the evolution of soot particles is numerically expensive. To reduce the computational cost but retain detailed physical modeling, quadrature-based moments methods can be efficiently employed to approximate the particle number density function (NDF). An example is the recently developed split-based extended quadrature method of moments (S-EQMOM), which enables a continuous description of the soot particles' NDF, essential to consider particle oxidation accurately. This model has shown promising results in laminar premixed flames up to turbulent laboratory scale configurations. However, the application to large-scale applications are still scarce. In this work, the S-EQMOM model is applied to the Rolls-Royce BR710 aero-engine combustor to investigate the soot evolution process in practically relevant configurations. For this, the soot model is embedded into a high-fidelity simulation framework, consisting of large eddy simulation for the turbulent flow and mixing and the flamelet-generated manifold method for chemistry reduction. An additional transport equation for polycyclic aromatic hydrocarbons is solved to model their slow chemistry and the transition from the gaseous phase to the solid phase. Simulations are performed for different operating conditions (idle, approach, climb, takeoff) to validate the model using experimental data. Subsequently, the results are analyzed to provide insights into the complex interactions of hydrodynamics, mixing, chemistry, and soot formation.

References

1.
European Commission, Directorate-General for Mobility and Transport, Directorate-General for Research and Innovation
,
2012
, “Flightpath 2050 – Europe’s Vision for Aviation – Maintaining Global Leadership and Serving Society’s Needs,”
Publications Office
, Luxembourg.
2.
Angersbach
,
A.
,
Bestie
,
D.
, and
Eggels
,
R.
,
2013
, “
Automated Combustor Preliminary Design Using Tools of Different Fidelity
,”
ASME
Paper No. GT2013-94411.10.1115/GT2013-94411
3.
Eggels
,
R. L. G. M.
,
2018
, “
The Application of Combustion LES Within Industry
,”
Direct and Large-Eddy Simulation X
,
D. G. E.
Grigoriadis
,
B. J.
Geurts
,
H.
Kuerten
, J. Fröhlich, and V. Armenio, eds.,
Springer International Publishing
, Cham, Switzerland, pp.
3
13
.10.1007/978-3-319-63212-4_1
4.
Leung
,
K. M.
,
Lindstedt
,
R. P.
, and
Jones
,
W. P.
,
1991
, “
A Simplified Reaction Mechanism for Soot Formation in Nonpremixed Flames
,”
Combust. Flame
,
87
(
3–4
), pp.
289
305
.10.1016/0010-2180(91)90114-Q
5.
Brocklehurst
,
H. T.
,
Priddin
,
C. H.
, and
Moss
,
J. B.
,
1997
, “
Soot Predictions Within an Aero Gas Turbine Combustion Chamber
,”
ASME
Paper No. 97-GT-148.10.1115/97-GT-148
6.
Tolpadi
,
A. K.
,
Danis
,
A. M.
,
Mongia
,
H. C.
, and
Lindstedt
,
R. P.
,
1997
, “
Soot Modeling in Gas Turbine Combustors
,”
ASME
Paper No. 97-GT-149.10.1115/97-GT-149
7.
Barths
,
H.
,
Peters
,
N.
,
Brehm
,
N.
,
Mack
,
A.
,
Pfitzner
,
M.
, and
Smiljanovski
,
V.
,
1998
, “
Simulation of Pollutant Formation in a Gas-Turbine Combustor Using Unsteady Flamelets
,”
Symp. (Int.) Combust.
,
27
(
2
), pp.
1841
1847
.10.1016/S0082-0784(98)80026-X
8.
Balthasar
,
M.
,
Mauss
,
F.
,
Pfitzner
,
M.
, and
Mack
,
A.
,
2002
, “
Implementation and Validation of a New Soot Model and Application to Aeroengine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
124
(
1
), pp.
66
74
.10.1115/1.1377596
9.
Riesmeier
,
E.
,
Honnet
,
S.
, and
Peters
,
N.
,
2004
, “
Flamelet Modeling of Pollutant Formation in a Gas Turbine Combustion Chamber Using Detailed Chemistry for a Kerosene Model Fuel
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
899
905
.10.1115/1.1787507
10.
Moss
,
J. B.
, and
Aksit
,
I. M.
,
2007
, “
Modelling Soot Formation in a Laminar Diffusion Flame Burning a Surrogate Kerosene Fuel
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3139
3146
.10.1016/j.proci.2006.07.016
11.
Saffaripour
,
M.
,
Veshkini
,
A.
,
Kholghy
,
M.
, and
Thomson
,
M. J.
,
2014
, “
Experimental Investigation and Detailed Modeling of Soot Aggregate Formation and Size Distribution in Laminar Coflow Diffusion Flames of Jet A-1, a Synthetic Kerosene, and n-Decane
,”
Combust. Flame
,
161
(
3
), pp.
848
863
.10.1016/j.combustflame.2013.10.016
12.
Zettervall
,
N.
,
Fureby
,
C.
, and
Nilsson
,
E. J. K.
,
2020
, “
A Reduced Chemical Kinetic Reaction Mechanism for Kerosene-Air Combustion
,”
Fuel
,
269
, p.
117446
.10.1016/j.fuel.2020.117446
13.
Mueller
,
M. E.
, and
Pitsch
,
H.
,
2013
, “
Large Eddy Simulation of Soot Evolution in an Aircraft Combustor
,”
Phys. Fluids
,
25
(
11
), p.
110812
.10.1063/1.4819347
14.
Eigentler
,
F.
,
Gerlinger
,
P.
, and
Eggels
,
R.
,
2022
, “
Soot CFD Simulation of a Real Aero Engine Combustor
,”
AIAA
Paper No. 2022-0489.10.2514/6.2022-0489
15.
Janicka
,
J.
, and
Sadiki
,
A.
,
2005
, “
Large Eddy Simulation of Turbulent Combustion Systems
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
537
547
.10.1016/j.proci.2004.08.279
16.
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.10.1080/00102200008935814
17.
Zucca
,
A.
,
Marchisio
,
D. L.
,
Barresi
,
A. A.
, and
Fox
,
R. O.
,
2006
, “
Implementation of the Population Balance Equation in CFD Codes for Modelling Soot Formation in Turbulent Flames
,”
Chem. Eng. Sci.
,
61
(
1
), pp.
87
95
.10.1016/j.ces.2004.11.061
18.
Attili
,
A.
,
Bisetti
,
F.
,
Mueller
,
M. E.
, and
Pitsch
,
H.
,
2014
, “
Formation, Growth, and Transport of Soot in a Three-Dimensional Turbulent Non-Premixed Jet Flame
,”
Combust. Flame
,
161
(
7
), pp.
1849
1865
.10.1016/j.combustflame.2014.01.008
19.
Mueller
,
M. E.
, and
Pitsch
,
H.
,
2012
, “
LES Model for Sooting Turbulent Nonpremixed Flames
,”
Combust. Flame
,
159
(
6
), pp.
2166
2180
.10.1016/j.combustflame.2012.02.001
20.
Xuan
,
Y.
, and
Blanquart
,
G.
,
2015
, “
Effects of Aromatic Chemistry-Turbulence Interactions on Soot Formation in a Turbulent Non-Premixed Flame
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1911
1919
.10.1016/j.proci.2014.06.138
21.
Koo
,
H.
,
Hassanaly
,
M.
,
Raman
,
V.
,
Mueller
,
M. E.
, and
Geigle
,
K. P.
,
2017
, “
Large-Eddy Simulation of Soot Formation in a Model Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
031503
.10.1115/1.4034448
22.
Hausdorff
,
F.
,
1923
, “
Momentprobleme Für Ein Endliches Intervall
,”
Math. Z.
,
16
(
1
), pp.
220
248
.10.1007/BF01175684
23.
Shohat
,
J.
, and
Tamarkin
,
J.
,
1943
,
The Problem of Moments
(Vol. 1 of Mathematical Surveys and Monographs),
American Mathematical Society
, Providence, RI.
24.
Salenbauch
,
S.
,
Hasse
,
C.
,
Vanni
,
M.
, and
Marchisio
,
D. L.
,
2019
, “
A Numerically Robust Method of Moments With Number Density Function Reconstruction and Its Application to Soot Formation, Growth and Oxidation
,”
J. Aerosol Sci.
,
128
, pp.
34
49
.10.1016/j.jaerosci.2018.11.009
25.
Yuan
,
C.
,
Laurent
,
F.
, and
Fox
,
R. O.
,
2012
, “
An Extended Quadrature Method of Moments for Population Balance Equations
,”
J. Aerosol Sci.
,
51
, pp.
1
23
.10.1016/j.jaerosci.2012.04.003
26.
Wick
,
A.
,
Nguyen
,
T. T.
,
Laurent
,
F.
,
Fox
,
R. O.
, and
Pitsch
,
H.
,
2017
, “
Modeling Soot Oxidation With the Extended Quadrature Method of Moments
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
789
797
.10.1016/j.proci.2016.08.004
27.
Pigou
,
M.
,
Morchain
,
J.
,
Fede
,
P.
,
Penet
,
M. I.
, and
Laronze
,
G.
,
2018
, “
New Developments of the Extended Quadrature Method of Moments to Solve Population Balance Equations
,”
J. Comput. Phys.
,
365
, pp.
243
268
.10.1016/j.jcp.2018.03.027
28.
Nguyen
,
T. T.
,
Laurent
,
F.
,
Fox
,
R. O.
, and
Massot
,
M.
,
2016
, “
Solution of Population Balance Equations in Applications With Fine Particles: Mathematical Modeling and Numerical Schemes
,”
J. Comput. Phys.
,
325
, pp.
129
156
.10.1016/j.jcp.2016.08.017
29.
Ferraro
,
F.
,
Gierth
,
S.
,
Salenbauch
,
S.
,
Han
,
W.
, and
Hasse
,
C.
,
2022
, “
Soot Particle Size Distribution Reconstruction in a Turbulent Sooting Flame With the Split-Based Extended Quadrature Method of Moments
,”
Phys. Fluids
,
34
(
7
), p.
075121
.10.1063/5.0098382
30.
Çokuslu
,
Ö. H.
,
Hasse
,
C.
,
Geigle
,
K. P.
, and
Ferraro
,
F.
,
2022
, “
Soot Prediction in a Model Aero-Engine Combustor Using a Quadrature-Based Method of Moments
,”
AIAA
Paper No. 2022-1446.10.2514/6.2022-1446
31.
Brehm
,
N.
,
Baker
,
S. J.
, and
Jones
,
S. P.
,
1997
, “
A Three Step NOx Reduction Programme: Achievements With the Single Annular Low-NOx Combustor for the BR 700 Engine Family
,”
ASME
Paper No. 97-GT-145.10.1115/97-GT-145
32.
Smiljanovski
,
V.
, and
Brehm
,
N.
,
1999
, “
CFO Liquid Spray Combustion Analysis of a Single Annular Gas Turbine Combustor
,”
ASME
Paper No. 99-GT-300.10.1115/99-GT-300
33.
Anand
,
M. S.
,
Eggels
,
R.
,
Staufer
,
M.
,
Zedda
,
M.
, and
Zhu
,
J.
,
2013
, “
An Advanced Unstructured-Grid Finite Volume Design System for Gas Turbine Combustion Analysis
,”
ASME
Paper No. GTINDIA2013-3537.10.1115/GTINDIA2013-3537
34.
Jasak
,
H.
,
Weller
,
H. G.
, and
Gosman
,
A. D.
,
1999
, “
High Resolution NVD Differencing Scheme for Arbitrarily Unstructured Meshes
,”
Int. J. Numer. Methods Fluids
,
31
(
2
), pp.
431
449
.10.1002/(SICI)1097-0363(19990930)31:2<431::AID-FLD884>3.0.CO;2-T
35.
Nicoud
,
F.
,
Toda
,
H. B.
,
Cabrit
,
O.
,
Bose
,
S.
, and
Lee
,
J.
,
2011
, “
Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations
,”
Phys. Fluids
,
23
(
8
), p.
085106
.10.1063/1.3623274
36.
Chin
,
J. S.
, and
Lefebvre
,
A. H.
,
1983
, “
Steady-State Evaporation Characteristics of Hydrocarbon Fuel Drops
,”
AIAA J.
,
21
(
10
), pp.
1437
1443
.10.2514/3.8264
37.
Hermanns
,
R.
,
2001
, “
CHEM1D, a One-Dimensional Laminar Flame Code
,”
Eindhoven University of Technology
, Eindhoven, The Netherlands, Report.
38.
Ramirez Hernandez
,
A.
,
Kathrotia
,
T.
,
Methling
,
T.
,
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
,
2022
, “
Reaction Model Development of Selected Aromatics as Relevant Molecules of a Kerosene Surrogate–the Importance of m-Xylene Within the Combustion of 1,3,5-Trimethylbenzene
,”
ASME J. Eng. Gas Turbines Power
,
144
(
2
), p.
021002
.10.1115/1.4052206
39.
Ramirez Hernandez
,
A.
,
Kathrotia
,
T.
,
Methling
,
T.
,
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
,
2022
, “
An Upgraded Chemical Kinetic Mechanism for ISO-Octane Oxidation: Prediction of Polyaromatics Formation in Laminar Counterflow Diffusion Flames
,”
ASME
Paper No. GTP-22-1474.10.1115/GTP-22-1474
40.
Kathrotia
,
T.
,
Oßwald
,
P.
,
Naumann
,
C.
,
Richter
,
S.
, and
Köhler
,
M.
,
2021
, “
Combustion Kinetics of Alternative Jet Fuels, Part-II: Reaction Model for Fuel Surrogate
,”
Fuel
,
302
, p.
120736
.10.1016/j.fuel.2021.120736
41.
Sewerin
,
F.
, and
Rigopoulos
,
S.
,
2018
, “
An LES-PBE-PDF Approach for Predicting the Soot Particle Size Distribution in Turbulent Flames
,”
Combust. Flame
,
189
, pp.
62
76
.10.1016/j.combustflame.2017.09.045
42.
Balthasar
,
M.
, and
Kraft
,
M.
,
2003
, “
A Stochastic Approach to Calculate the Particle Size Distribution Function of Soot Particles in Laminar Premixed Flames
,”
Combust. Flame
,
133
(
3
), pp.
289
298
.10.1016/S0010-2180(03)00003-8
43.
Kazakov
,
A.
, and
Frenklach
,
M.
,
1998
, “
Dynamic Modeling of Soot Particle Coagulation and Aggregation: Implementation With the Method of Moments and Application to High-Pressure Laminar Premixed Flames
,”
Combust. Flame
,
114
(
3–4
), pp.
484
501
.10.1016/S0010-2180(97)00322-2
44.
Frenklach
,
M.
, and
Wang
,
H.
,
1991
, “
Detailed Modeling of Soot Particle Nucleation and Growth
,”
Symp. (Int.) Combust.
,
23
(
1
), pp.
1559
1566
.10.1016/S0082-0784(06)80426-1
45.
Frenklach
,
M.
, and
Wang
,
H.
,
1994
, “
Detailed Mechanism and Modeling of Soot Particle Formation, Soot Formation
,”
Combustion
(Springer Series in Chemical Physics, 59),
H.
Bockhorn
, ed.,
Springer
,
Berlin, Heidelberg
, pp.
165
192
.
46.
Appel
,
J.
,
Bockhorn
,
H.
, and
Frenklach
,
M.
,
2000
, “
Kinetic Modeling of Soot Formation With Detailed Chemistry and Physics: Laminar Premixed Flames of C2 Hydrocarbons
,”
Combust. Flame
,
121
(
1–2
), pp.
122
136
.10.1016/S0010-2180(99)00135-2
47.
Ihme
,
M.
, and
Pitsch
,
H.
,
2008
, “
Prediction of Extinction and Reignition in Nonpremixed Turbulent Flames Using a Flamelet/Progress Variable Model 2—Application in LES of Sandia Flames D and E
,”
Combust. Flame
,
155
(
1–2
), pp.
90
107
.10.1016/j.combustflame.2008.04.015
48.
Celik
,
I. B.
,
Cehreli
,
Z. N.
, and
Yavuz
,
I.
,
2005
, “
Index of Resolution Quality for Large Eddy Simulations
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
949
958
.10.1115/1.1990201
49.
EASA
,
2022
, “
ICAO Aircraft Engine Emissions Databank
,” European Union Aviation Safety Agency, Cologne, Germany, accessed Dec. 22, 2022, https://www.easa.europa.eu/en/domains/environment/icao-aircraft-engine-emissions-databank
50.
Kumal
,
R. R.
,
Liu
,
J.
,
Gharpure
,
A.
,
Vander Wal
,
R. L.
,
Kinsey
,
J. S.
,
Giannelli
,
B.
,
Stevens
,
J.
, et al.,
2020
, “
Impact of Biofuel Blends on Black Carbon Emissions From a Gas Turbine Engine
,”
Energy Fuels
,
34
(
4
), pp.
4958
4966
.10.1021/acs.energyfuels.0c00094
You do not currently have access to this content.