Abstract

This paper developed a process for turbine tip clearance prediction and control considering performance degradation to address the contradiction between computational efficiency and computational accuracy. The developed process consists of an offline high-accuracy database establishment for tip clearance with performance degradation and an online fast tip clearance prediction and control using machine learning. For the former, the steady-state tip clearance is obtained by the calculations for the two-dimensional axisymmetric casing and disk deformations using the finite element method and the one-dimensional blade deformation using the engineering calculation method. The effects of performance degradation, including blade creep and turbine inlet temperature degradation are introduced to update the boundary conditions in gas path and initial clearance. For the latter, the multilayer perceptron is used to realize the fast tip clearance prediction. Considering the independence of component deformations, the tip clearance prediction is achieved by the component deformation predictions, which also reduces the dimension of input parameters for each prediction model and improves the prediction accuracy. Combining the above two parts, the tip clearance with performance degradation can be obtained within 0.00025 s/time, and the maximum absolute error is only 0.012 mm. In addition, with the help of the process, the optimized tip clearance control strategy can be obtained for the performance degradation states, which restores the tip clearance with a 17.66% increment to the initial state without performance degradation. This paper will provide a reference for the tip clearance prediction and control with small computation and high accuracy.

References

1.
Lattime
,
S. B.
, and
Steinetz
,
B. M.
,
2004
, “
High-Pressure-Turbine Clearance Control Systems: Current Practices and Future Directions
,”
J. Propul. Power
,
20
(
2
), pp.
302
311
.10.2514/1.9255
2.
Chen
,
X.
,
Koppe
,
B.
,
Lange
,
M.
,
Chu
,
W.
, and
Mailach
,
R.
,
2022
, “
Comparison of Turbulence Modeling for a Compressor Rotor at Different Tip Clearances
,”
AIAA J.
,
60
(
2
), pp.
1186
1198
.10.2514/1.J060468
3.
Chapman
,
J. W.
,
Kratz
,
J.
, Guo, T. H., and Litt, L.,
2016
, “
Integrated Turbine Tip Clearance and Gas Turbine Engine Simulation
,”
AIAA
Paper No. 2016–5047.10.2514/6.2016-5047
4.
Fei
,
C.-W.
,
Choy
,
Y.-S.
,
Hu
,
D.-Y.
,
Bai
,
G.-C.
, and
Tang
,
W.-Z.
,
2016
, “
Transient Probabilistic Analysis for Turbine Blade-Tip Radial Clearance With Multi-Component and Multi-Physics Fields Based on DCERSM
,”
Aerosp. Sci. Technol.
,
50
, pp.
62
70
.10.1016/j.ast.2015.11.025
5.
Lorenzo
,
C.
,
Alessio
,
P.
, and
Bruno
,
F.
, Riccardo, D. S., Lorenzo, M., Lorenzo, T., Laurent, D., et al., 2022, “
Effect of Jet-to-Jet Distance and Pipe Position on Flow and Heat Transfer Features of Active Clearance Control Systems
,”
ASME J. Eng. Gas Turbines Power
,
144
(
4
), p.
041010
.10.1115/1.4052953
6.
Lattime
,
S.
, and
Bruce
,
S.
,
2002
, “
Turbine Engine Clearance Control Systems: Current Practices and Future Directions
,”
AIAA
Paper No. 2002-3790.10.2514/6.2002-3790
7.
He
,
H.
,
Mao
,
J.
, and
Liu
,
F.
, Yang, Y., Fan, J., Liu, Z., and Xu, Q.,
2020
, “
Method of Turbine Tip Clearance Prediction Considering Engine Performance Degradation
,”
J. Propul. Technol.
,
41
(
10
), pp.
2283
2291
.
8.
Andreini
,
A.
,
Da Soghe
,
R.
,
Facchini
,
B.
,
Maiuolo
,
F.
,
Tarchi
,
L.
, and
Coutandin
,
D.
,
2013
, “
Experimental and Numerical Analysis of Multiple Impingement Jet Arrays for an Active Clearance Control System
,”
ASME J. Turbomach.
,
135
(
3
), p.
031016
.10.1115/1.4007481
9.
Liu
,
F.
,
Mao
,
J.
,
Han
,
X.
, and
Gu
,
W.
,
2018
, “
Heat Transfer of Impinging Jet Arrays on Ribbed Surface
,”
J. Thermophys. Heat Transfer
,
32
(
3
), pp.
669
679
.10.2514/1.T5288
10.
Cocchi
,
L.
,
Picchi
,
A.
,
Facchini
,
B.
,
Da Soghe
,
R.
,
Mazzei
,
L.
,
Tarchi
,
L.
,
Descamps
,
L.
, and
Rotenberg
,
M.
,
2022
, “
Effect of Jet-to-Jet Distance and Pipe Position on Flow and Heat Transfer Features of Active Clearance Control Systems
,”
ASME J. Eng. Gas Turbines Power
,
144
(
4
), p.
041010
.10.1115/GT2021-59158
11.
Gaffin
, and
William
,
O.
,
1979
, “
JT9D-70/59 Improved High Pressure Turbine Active Clearance Control System
,” NASA Report No.
NASA-CR-159661
.https://ntrs.nasa.gov/api/citations/19790023037/downloads/19790023037.pdf
12.
Wang
,
P.
,
Zeng
,
J.
, and
Li
,
T.
, Guo, W., Zhang, J., and Yang, S.,
2018
, “
Test on Heat Transfer Characteristics of High Pressure Turbine Casing With Active Clearance Control System
,”
J. Aerosp. Power
,
33
(
1
), pp.
165
173
.
13.
Xu
,
Y.
,
Mao
,
J.
,
Wang
,
P.
, Zeng, J., Wang, D., and Guo, W.,
2016
, “
Experiment on Active Clearance Control System of High Pressure Turbine Case With Thermal Deformation Control
,”
J. Aerosp. Power
,
31
(
7
), pp.
1591
1601
.10.13224/j.cnki.jasp.2016.07.007
14.
Hu
,
J.
,
Gao
,
J.
,
Liu
,
G.
, Cui, L., and Guo, B.,
2018
, “
Experiment of High Pressure Turbine Case Based on Active Clearance Control System
,”
J. Propul. Technol.
,
39
(
4
), pp.
740
750
.
15.
Agarwal
,
H.
,
Akkaram
,
S.
,
Shetye
,
S.
, and McCallum, A.,
2008
, “
Reduced Order Clearance Models for Gas Turbine Applications
,”
AIAA
Paper No. 2008-2177.10.2514/6.2008-2177
16.
Peng
,
K.
,
Fan
,
D.
,
Yang
,
F.
,
Fu
,
Q.
, and
Li
,
Y.
,
2013
, “
Active Generalized Predictive Control of Turbine Tip Clearance for Aero-Engines
,”
Chin. J. Aeronaut.
,
26
(
5
), pp.
1147
1155
.10.1016/j.cja.2013.07.005
17.
Kratz
,
J. L.
, and
Chapman
,
J. W.
,
2018
, “
Active Turbine Tip Clearance Control Trade Space Analysis of an Advanced Geared Turbofan Engine
,”
AIAA
Paper No. 2018–4822.10.2514/6.2018-4822
18.
Bordo
,
L.
,
Bruzzone
,
S.
,
Perrone
,
A.
, and Traversone, L.,
2012
, “
Prediction of Clearance in Industrial Gas Turbine Validated by Field Operation Data
,”
ASME
Paper No. GT2012-69617.10.1115/GT2012-69617
19.
Kumar
,
R.
,
Kumar
,
V. S.
,
Butt
,
M. M.
,
Sheikh
,
N. A.
,
Khan
,
S. A.
, and
Afzal
,
A.
,
2020
, “
Thermo-Mechanical Analysis and Estimation of Turbine Blade Tip Clearance of a Small Gas Turbine Engine Under Transient Operating Conditions
,”
Appl. Therm. Eng.
,
179
, p.
115700
.10.1016/j.applthermaleng.2020.115700
20.
Fei
,
C. W.
,
Tang
,
W. Z.
, and
Bai
,
G. C.
,
2015
, “
Nonlinear Dynamic Probabilistic Design of Turbine Disk-Radial Deformation Using Extremum Response Surface Method-Based Support Vector Machine of Regression
,”
Proc. Inst. Mech. Eng., Part G J. Aerosp. Eng.
,
229
(
2
), pp.
290
300
.10.1177/0954410014531740
21.
Fei
,
C.-W.
,
Bai
,
G.-C.
,
Tang
,
W.-Z.
, and
Choy
,
Y.
,
2015
, “
Optimum Control for Nonlinear Dynamic Radial Deformation of Turbine Casing With Time-Varying LSSVM
,”
Adv. Mater. Sci. Eng.
,
2015
, pp.
1
9
.10.1155/2015/680406
22.
Song
,
L. K.
,
Bai
,
G. C.
, and
Fei
,
C. W.
,
2019
, “
Dynamic Surrogate Modeling Approach for Probabilistic Creep-Fatigue Life Evaluation of Turbine Disks
,”
Aerosp. Sci. Technol.
,
95
, p.
105439
.10.1016/j.ast.2019.105439
23.
Schmidt
,
T.
,
Gümmer
,
V.
, and
Konle
,
M.
,
2021
, “
Potential of Surrogate Modelling in Compressor Casing Design Focussing on Rapid Tip Clearance Assessments
,”
Aeronaut. J.
,
125
(
1291
), pp.
1587
1610
.10.1017/aer.2021.39
24.
Aslinezhad
,
M.
, and
Hejazi
,
M. A.
,
2020
, “
Turbine Blade Tip Clearance Determination Using Microwave Measurement and K-Nearest Neighbour Classifier
,”
Measurement
,
151
, p.
107142
.10.1016/j.measurement.2019.107142
25.
Huang
,
X.
,
Zhang
,
X.
,
Xiong
,
Y.
,
Liu
,
H.
, and
Zhang
,
Y.
,
2021
, “
A Novel Intelligent Fault Diagnosis Approach for Early Cracks of Turbine Blades Via Improved Deep Belief Network Using Three-Dimensional Blade Tip Clearance
,”
IEEE Access
,
9
, pp.
13039
13051
.10.1109/ACCESS.2021.3052217
26.
Jaw
,
L.
, and
Jaw
,
L.
,
1997
, “
Neural Network Modeling of Engine Tip Clearance
,”
AIAA
Paper No. 97-
2775
.10.2514/6.1997-2775
27.
Zhai
,
X.
,
Fei
,
C.-W.
,
Zhai
,
Q.-G.
, and
Wang
,
J.-J.
,
2014
, “
Reliability and Sensitivity Analyses of HPT Blade-Tip Radial Running Clearance Using Multiply Response Surface Model
,”
J. Central South Univ.
,
21
(
11
), pp.
4368
4377
.10.1007/s11771-014-2437-y
28.
Cao
,
Q.
,
Chen
,
S.
,
Zheng
,
Y.
,
Ding
,
Y.
,
Tang
,
Y.
,
Huang
,
Q.
,
Wang
,
K.
, and
Xiang
,
W.
,
2021
, “
Classification and Prediction of Gas Turbine Gas Path Degradation Based on Deep Neural Networks
,”
Int. J. Energy Res.
,
45
(
7
), pp.
10513
10526
.10.1002/er.6539
29.
Jiang
,
G.
,
Kang
,
M.
,
Cai
,
Z.
,
Liu
,
Y.
, and
Wang
,
W.
,
2022
, “
Data-Driven Temperature Estimation of Non-Contact Solids Using Deep-Learning Reduced-Order Models
,”
Int. J. Heat Mass Transfer
,
185
, p.
122383
.10.1016/j.ijheatmasstransfer.2021.122383
30.
Tausendschön
,
J.
, and
Radl
,
S.
,
2021
, “
Deep Neural Network-Based Heat Radiation Modelling Between Particles and Between Walls and Particles
,”
Int. J. Heat Mass Transfer
,
177
, p.
121557
.10.1016/j.ijheatmasstransfer.2021.121557
31.
Li
,
Z.
,
Wen
,
F.
,
Tang
,
X.
, Su, L., and Wang, S.,
2021
, “
Predicition of Single Row Hole Film Cooling Performance Based on Deep Learning
,”
Acta Aeronaut. Astronaut. Sin.
,
42
(
4
), p.
524331
.10.7527/S1000-6893.2020.24331
32.
Chang
,
P.
,
Kong
,
Y.
,
Chen
,
G.
, Xie, L., and Zhu, S.,
2015
, “
Stress Relaxation Behavior and Creep Constitutive Equation of GH4169 Superalloy at High Temperature
,”
Mater. Mech. Eng.
,
39
(
5
), pp.
89
92
.
33.
Zhao
,
Y.
,
Hu
,
J.
,
Tu
,
B.
, and Lai, A.,
2013
, “
Simulation of Component Deterioration Effect on Performance of High Bypass Ratio Turbofan Engine
,”
J. Nanjing Univ. Aeronaut. Astronaut.
,
45
(
4
), pp.
447
452
.https://www.researchgate.net/publication/290655533_Simulation_of_component_deterioration_effect_on_performance_of_high_bypass_ratio_turbofan_engine
34.
Gu
,
G.
,
Mao
,
L.
,
Zhang
,
Y.
, Xu, Y., and Zhao, X.,
2018
, “
Design of Experimental Apparatus for the Engine Case in Active Clearance Control System
,”
J. Chongqing Univ. Technol.
,
3
, pp.
96
104
.
35.
He
,
H.
,
2021
, “
Application of Integrated Fusion Surrogate Model in Turbine Tip Clearance Design
,” Master thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
You do not currently have access to this content.