Abstract

The performance and stable operating range of compressors are critical for the efficient operation of various turbomachinery systems. To reveal the flow instability mechanism of a high-speed and high-loaded compressor, a systematic experimental study on a 1.5-stage high-loaded compressor was conducted in this paper. First, the aerodynamic design and aerodynamic performance evaluation of the compressor were carried out. At 100% corrected speed, the measured choked flowrate, peak efficiency, and stall margin were 4.59 kg/s, 87.1% and 17.5%, respectively. Second, the flow instability mechanism of the highly loaded compressor at different corrected speeds was clarified through the experiments. At 50% corrected speed, the compressor rotor developed from a spike-wave stall precursor to a rotating stall; at 70% corrected speed, the compressor developed directly from a spike-wave precursor to surge; at 90% corrected speed, the compressor has undergone the process of modal wave precursor, spike-wave precursor, and surge. Further, at 70% and 90% corrected speed, a classic surge occurred with surge frequencies of 11.91 Hz and 9.59 Hz, respectively. Through the analysis of short-time power spectrum maximum amplitude, the warning time for the surge was 6.7 ms and 15.6 ms, respectively. Finally, as the compressor throttles to stall/surge conditions, the degree of fluctuation of the autocorrelation coefficient and cross-correlation coefficient increases.

References

1.
Budt
,
M.
,
Wolf
,
D.
,
Span
,
R.
, and
Yan
,
J.
,
2016
, “
A Review on Compressed Air Energy Storage: Basic Principles, Past Milestones and Recent Developments
,”
Appl. Energy
,
170
, pp.
250
268
.10.1016/j.apenergy.2016.02.108
2.
Guo
,
H.
,
Xu
,
Y.
,
Chen
,
H.
,
Zhang
,
X.
, and
Qin
,
W.
,
2018
, “
Corresponding-Point Methodology for Physical Energy Storage System Analysis and Application to Compressed Air Energy Storage System
,”
Energy
,
143
, pp.
772
784
.10.1016/j.energy.2017.10.132
3.
Sun
,
S.
,
Wang
,
S.
, and
Chen
,
S.
,
2020
, “
The Influence of Diversified Forward Sweep Heights on Operating Range and Performance of an Ultra-High-Load Low-Reaction Transonic Compressor Rotor
,”
Energy
,
194
, p.
116857
.10.1016/j.energy.2019.116857
4.
Wojcik
,
J. D.
, and
Wang
,
J.
,
2018
, “
Feasibility Study of Combined Cycle Gas Turbine (CCGT) Power Plant Integration With Adiabatic Compressed Air Energy Storage(ACAES)
,”
Appl. Energy
,
221
, pp.
477
489
.10.1016/j.apenergy.2018.03.089
5.
?Nie
,
C.
,
Xu
,
G.
,
Cheng
,
X.
, and
Chen
,
J.
, 2002, “Micro Air Injection and Its Unsteady Response in a Low-Speed Axial Compressor,”
ASME J. Turbomach.
, 124(4), pp.
572
579
.10.1115/1.1508383
6.
Dring
,
R. P.
,
1984
, “
Blockage in Axial Compressors
,”
ASME J. Eng. Gas Turbines Power
,
106
(
3
), pp.
712
714
.10.1115/1.3239628
7.
Ji
,
L.
,
Li
,
W.
,
Shi
,
W.
,
Tian
,
F.
, and
Agarwal
,
R.
,
2021
, “
Effect of Blade Thickness on Rotating Stall of Mixed-Flow Pump Using Entropy Generation Analysis
,”
Energy
,
236
, p.
121381
.10.1016/j.energy.2021.121381
8.
Day
,
I. J.
,
2016
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.10.1115/1.4031473
9.
Emmons
,
H. W.
,
Pearson
,
C. E.
, and
Grant
,
H. P.
,
1955
, “
Compressor Surge and Stall Propagation
,”
Trans. ASME
,
77
(
4
), pp.
455
467
.10.1115/1.4014389
10.
Day
,
I. J.
,
1993
, “
Stall Inception in Axial Flow Compressors
,”
ASME J. Turbomach.
,
115
(
1
), pp.
1
9
.10.1115/1.2929209
11.
Mcdougall
,
N. M.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
1990
, “
Stall Inception in Axial Compressors
,”
ASME J. Turbomach.
,
112
(
1
), pp.
116
123
.10.1115/1.2927406
12.
Camp
,
T. R.
, and
Day
,
I. J.
,
1997
, “
A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor
,”
ASME
Paper No. 97-GT-526.10.1115/97-GT-526
13.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
.10.1115/1.2750674
14.
Dodds
,
J.
, and
Vahdati
,
M.
,
2015
, “
Rotating Stall Observations in a High Speed Compressor—Part II: Numerical Study
,”
ASME J. Turbomach.
,
137
(
5
), p.
051003
.10.1115/1.4028558
15.
Berdanier
,
R. A.
,
Smith
,
N. R.
,
Young
,
A. M.
, and
Key
,
N. L.
,
2018
, “
Effects of Tip Clearance on Stall Inception in a Multistage Compressor
,”
J. Propul. Power
,
34
(
2
), pp.
308
317
.10.2514/1.B36364
16.
Brandstetter
,
C.
,
Jüngst
,
M.
, and
Schiffer
,
H.-P.
,
2018
, “
Measurements of Radial Vortices, Spill Forward, and Vortex Breakdown in a Transonic Compressor
,”
ASME J. Turbomach.
,
140
(
6
), p.
061004
.10.1115/1.4039053
17.
Hu
,
C.
,
Geng
,
K.
,
Yang
,
C.
,
Zhou
,
M.
, and
Chen
,
H.
,
2021
, “
Thermodynamics Investigation and Spike-Stall Identification Based on Energy Loss of Centrifugal Compressor
,”
Int. J. Heat Mass Transfer
,
166
, p.
120693
.10.1016/j.ijheatmasstransfer.2020.120693
18.
Li
,
J.
,
Dong
,
X.
,
Sun
,
D.
,
Xu
,
R.
, and
Sun
,
X.
,
2021
, “
Response and Stabilization of a Two-Stage Axial Flow Compressor Restricted by Rotating Inlet Distortion
,”
Chin. J. Aeronaut.
,
34
(
9
), pp.
72
82
.10.1016/j.cja.2021.02.005
19.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part I: Theoretical Compression System Model
,”
ASME J. Eng. Power
,
98
(
2
), pp.
190
198
.10.1115/1.3446138
20.
Liśkiewicz
,
G.
,
Horodko
,
L.
,
Stickland
,
M.
, and
Kryłłowicz
,
W.
,
2014
, “
Identification of phenomena preceding blower Surge by Means of Pressure Spectral Maps
,”
Exp. Therm. Fluid Sci.
,
54
, pp.
267
278
.10.1016/j.expthermflusci.2014.01.002
21.
He
,
X.
, and
Zheng
,
X.
,
2018
, “
Flow Instability Evolution in High Pressure Ratio Centrifugal Compressor With Vaned Diffuser
,”
Exp. Therm. Fluid Sci.
,
98
, pp.
719
730
.10.1016/j.expthermflusci.2018.06.023
22.
Zhang
,
M.
,
Zheng
,
X.
, and
Sun
,
Z.
,
2019
, “
Experimental Investigation of the Flow Instability of a Compression System With an Upstream Plenum
,”
Exp. Therm. Fluid Sci.
,
102
, pp.
406
420
.10.1016/j.expthermflusci.2018.12.020
23.
Epstein
,
A. H.
,
Williams
,
J. F.
, and
Greitzer
,
E. M.
,
1989
, “
Active Suppression of Aerodynamic Instabilities in Turbomachines
,”
J. Propul. Power
,
5
(
2
), pp.
204
211
.10.2514/3.23137
24.
Liu
,
Y.
,
Li
,
J.
,
Du
,
J.
,
Zhang
,
H.
, and
Nie
,
C.
,
2021
, “
Reliability Analysis for Stall Warning Methods in an Axial Flow Compressor
,”
Aerosp. Sci. Technol.
,
115
(
1
), p.
106816
.10.1016/j.ast.2021.106816
25.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Iwamoto
,
T.
, and
Ando
,
Y.
,
1991
, “
Detection of a Rotating Stall Precursor in Isolated Axial Flow Compressor Rotors
,”
ASME J. Turbomach.
,
113
(
2
), pp.
281
287
.10.1115/1.2929102
26.
Bright
,
M. M.
,
Qammar
,
H.
, and
Vhora
,
H.
,
1998
, “
Rotating Pip Detection and Stall Warning in High-Speed Compressors Using Structure Functions
,”
Proceedings of the AGARD RTO AVT Conference
, Toulouse, France, May 11–15, pp.
1
7
.https://ntrs.nasa.gov/citations/20000020815
27.
Dhingra
,
M.
,
Neumeier
,
Y.
,
Prasad
,
J. V. R.
,
Breeze-Stringfellow
,
A.
,
Shin
,
H.-W.
, and
Szucs
,
P. N.
,
2007
, “
A Stochastic Model for a Compressor Stability Measure
,”
ASME J. Eng. Gas Turbines Power
,
129
(
3
), pp.
730
737
.10.1115/1.2718231
28.
Bindl
,
S.
,
Stel
,
M.
, and
Niehuis
,
R.
,
2009
, “
Stall Detection Within the Low Pressure Compressor of a Twin-Spool Turbofan Engine by Tip Flow Analysis
,”
ASME
Paper No. GT2009-59032.10.1115/GT2009-59032
29.
Young
,
A.
,
Day
,
I.
, and
Pullan
,
G.
,
2011
, “
Stall Warning by Blade Passing Signature Analysis
,”
ASME
Paper No. GT2011-45850.10.1115/GT2011-45850
30.
Lin
,
F.
,
Chen
,
J.
, and
Li
,
M.
,
2004
, “
Wavelet Analysis of Rotor-Tip Disturbances in an Axial-Flow Compressor
,”
J. Propul. Power
,
20
(
2
), pp.
319
334
.10.2514/1.9257
31.
Li
,
J.
,
Liu
,
Y.
,
Du
,
J.
, and
Zhang
,
H.
,
2020
, “
Automatic Stability Control Using Tip Air Injection in a Multi-Stage Axial Compressor
,”
Aerosp. Sci. Technol.
,
98
, p.
105707
.10.1016/j.ast.2020.105707
32.
Yang
,
C.
,
Fu
,
L.
,
Hu
,
C.
, and
Shi
,
X.
,
2021
, “
Modelling and Dynamic Mode Analysis of Compressor Impeller Spike-Type Stall With Global Stability Approach
,”
Int. J. Mech. Sci.
,
201
, p.
106486
.10.1016/j.ijmecsci.2021.106486
33.
Guan
,
D.
,
Sun
,
D.
,
Xu
,
R.
,
Bishop
,
D.
,
Sun
,
X.
,
Ni
,
S.
,
Du
,
J.
, and
Zhao
,
D.
,
2021
, “
Experimental Investigation on Axial Compressor Stall Phenomena Using Aeroacoustics Measurements Via Empirical Mode and Proper Orthogonal Decomposition Methods
,”
Aerosp. Sci. Technol.
,
112
, p.
106655
.10.1016/j.ast.2021.106655
34.
Kumar
,
A.
, and
Pradeep
,
A. M.
,
2021
, “
Experimental Investigation of Tandem Rotor Under Clean and Radially Distorted Inflows
,”
Propul. Power Res.
,
10
(
3
), pp.
247
261
.10.1016/j.jppr.2021.05.004
35.
Huang
,
S.
,
Cheng
,
J.
,
Yang
,
C.
,
Zhou
,
C.
,
Zhao
,
S.
, and
Lu
,
X.
,
2020
, “
Optimization Design of a 2.5 Stage Highly Loaded Axial Compressor With a Bezier Surface Modeling Method
,”
Appl. Sci.
,
10
(
11
), p.
3860
.10.3390/app10113860
36.
Levy
,
Y.
, and
Pismenny
,
J.
,
2003
, “
The Number and Speed of Stall Cells During Rotating Stall
,”
ASME
Paper No. GT2003-38221.10.1115/GT2003-38221
You do not currently have access to this content.