Abstract

Spark assisted compression ignition (SACI) represents an efficacious technique to extend the operating range and control combustion timing in homogeneous charge compression ignition (HCCI) engines. Recently, a hot surface ignition system (HSI) was demonstrated to enable hot surface assisted compression ignition (HSACI) featuring similar combustion characteristics compared to SACI. This work compares both combustion processes with regard to control and combustion characteristics, the strength of the ignition systems, and cycle-by-cycle variations (CCV). Engine trials were conducted using a single-cylinder research engine fueled with natural gas. The engine operated naturally aspirated at an engine speed of 1400 1/min and steady-state conditions. Experimental conditions cover relative air-fuel ratios λ = 2.1–3.1, intake temperatures Tin = 140–170 °C and intake pressures pin = 993–995 mbar. Results show similar capabilities of SACI and HSACI to control combustion timing by means of spark timing in SACI and hot surface temperature in HSACI. Heat release analyses of individual combustion cycles point out the similarity of both combustion processes. The evaluation of the strength of the ignition systems reveals that HSACI extends the lean limit by Δλ = 0.05–0.10 and advances the earliest applicable combustion timing (MinCA50) by ΔMinCA50 = 1.0–4.5 °CA provided that ringing is not of concern. Comparison of CCV in HCCI, SACI, and HSACI shows highest combustion stability for HCCI, followed by SACI. HSACI evinces highest CCV due to a larger variation at the start of combustion.

References

1.
Najt
,
P.
, and
Foster
,
D. E.
,
1983
, “
Compression-Ignited Homogeneous Charge Combustion
,” SAE Paper No. 830264.10.4271/830264
2.
Christensen
,
M.
,
Johansson
,
B.
, and
Einewall
,
P.
,
1997
, “
Homogeneous Charge Compression Ignition (HCCI) Using Isooctane, Ethanol and Natural Gas–A Comparison With Spark Ignition Operation
,” SAE Paper No. 972874.10.4271/972874
3.
Dec
,
J. E.
,
2009
, “
Advanced Compression-Ignition Engines—Understanding the in-Cylinder Processes
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2727
2742
.10.1016/j.proci.2008.08.008
4.
Manofsky
,
L.
,
Vavra
,
J.
,
Assanis
,
D. N.
, and
Babajimopoulos
,
A.
,
2011
, “
Bridging the Gap Between HCCI and SI: Spark-Assisted Compression Ignition
,” SAE Paper No. 2011-01-1179.10.4271/2011-01-1179
5.
Persson
,
H.
,
Hultqvist
,
A.
, and
Johansson
,
B.
,
2007
, “
Investigation of the Early Flame Development in Spark Assisted HCCI Combustion Using High Speed Chemiluminescence Imaging
,” SAE Paper No. 2007-01-0212.10.4271/2007-01-0212
6.
Wang
,
Z.
,
Wang
,
J.
,
Shuai
,
S.
,
He
,
X.
, et al.,
2009
, “
Research on Spark Induced Compression Ignition (SICI)
,” SAE Paper No. 2009-01-0132.10.4271/2009-01-0132
7.
Zigler
,
B. T.
,
Keros
,
P. E.
,
Helleberg
,
K. B.
,
Fatouraie
,
M.
,
Assanis
,
D.
, and
Wooldridge
,
M. S.
,
2011
, “
An Experimental Investigation of the Sensitivity of the Ignition and Combustion Properties of a Single-Cylinder Research Engine to Spark-Assisted HCCI
,”
Int. J. Engine Res.
,
12
(
4
), pp.
353
375
.10.1177/1468087411401286
8.
Middleton
,
R. J.
,
Olesky
,
L. K. M.
,
Lavoie
,
G. A.
,
Wooldridge
,
M. S.
,
Assanis
,
D. N.
, and
Martz
,
J. B.
,
2015
, “
The Effect of Spark Timing and Negative Valve Overlap on Spark Assisted Compression Ignition Combustion Heat Release Rate
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3117
3124
.10.1016/j.proci.2014.08.021
9.
Olesky
,
L. M.
,
Martz
,
J. B.
,
Lavoie
,
G. A.
,
Vavra
,
J.
,
Assanis
,
D. N.
, and
Babajimopoulos
,
A.
,
2013
, “
The Effects of Spark Timing, Unburned Gas Temperature, and Negative Valve Overlap on the Rates of Stoichiometric Spark Assisted Compression Ignition Combustion
,”
Appl. Energy
,
105
(
5
), pp.
407
417
.10.1016/j.apenergy.2013.01.038
10.
Urushihara
,
T.
,
Yamaguchu
,
K.
,
Yoshizawa
,
K.
, and
Itoh
,
T.
,
2005
, “
A Study of a Gasoline-Fueled Compression Ignition Engine - Expansion of HCCI Operation Range Using SI Combustion as a Trigger of Compression Ignition
,” SAE Paper No. 2005-01-0180.10.4271/2005-01-0180
11.
Lavoie
,
G. A.
,
Martz
,
J.
,
Wooldridge
,
M.
, and
Assanis
,
D.
,
2010
, “
A Multi-Mode Combustion Diagram for Spark Assisted Compression Ignition
,”
Combust. Flame
,
157
(
6
), pp.
1106
1110
.10.1016/j.combustflame.2010.02.009
12.
Olesky
,
L. K. M.
,
Middleton
,
R. J.
,
Lavoie
,
G. A.
,
Wooldridge
,
M. S.
, and
Martz
,
J. B.
,
2015
, “
On the Sensitivity of Low Temperature Combustion to Spark Assist Near Flame Limit Conditions
,”
Fuel
,
158
(
5
), pp.
11
22
.10.1016/j.fuel.2015.05.012
13.
Middleton
,
R. J.
,
Martz
,
J. B.
,
Lavoie
,
G. A.
,
Babajimopoulos
,
A.
, and
Assanis
,
D. N.
,
2012
, “
A Computational Study and Correlation of Premixed Isooctane Air Laminar Reaction Fronts Diluted With EGR
,”
Combust. Flame
,
159
(
10
), pp.
3146
3157
.10.1016/j.combustflame.2012.04.014
14.
Robertson
,
D.
, and
Prucka
,
R.
,
2019
, “
A Review of Spark-Assisted Compression Ignition (SACI) Research in the Context of Realizing Production Control Strategies
,” SAE Paper No. 2019-24-0027.10.4271/2019-24-0027
15.
Scholl
,
F.
,
2017
, “
Study of Premixed Combustion Induced by Controlled Hot Surface Ignition in Stationary Gas Engines
,”
Ph.D. thesis
,
University of Valladolid & Hochschule Karlsruhe
, Valladolid, Karlsruhe.10.35376/10324/28664
16.
Menon
,
S. K.
,
Boettcher
,
P. A.
,
Ventura
,
B.
, and
Blanquart
,
G.
,
2016
, “
Hot Surface Ignition of n-Hexane in Air
,”
Combust. Flame
,
163
, pp.
42
53
.10.1016/j.combustflame.2015.08.011
17.
Mével
,
R.
,
Melguizo-Gavilanes
,
J.
,
Boeck
,
L. R.
, and
Shepherd
,
J. E.
,
2019
, “
Experimental and Numerical Study of the Ignition of Hydrogen-Air Mixtures by a Localized Stationary Hot Surface
,”
Int. J. Heat Fluid Flow
,
76
(
76
), pp.
154
169
.10.1016/j.ijheatfluidflow.2019.02.005
18.
Yao
,
C.
,
Zhou
,
T.
,
Yang
,
F.
,
Hu
,
Y.
,
Wang
,
J.
, and
Ouyang
,
M.
,
2017
, “
Experimental Study of Glow Plug Assisted Compression Ignition
,”
Fuel
,
197
(
2
), pp.
111
120
.10.1016/j.fuel.2017.02.008
19.
Borgqvist
,
P.
,
Andersson
,
Ö.
,
Tunestal
,
P.
, and
Johansson
,
B.
,
2013
, “
The Low Load Limit of Gasoline Partially Premixed Combustion Using Negative Valve Overlap
,”
ASME J. Eng. Gas Turbines Power
, 135(6), p. 062002.10.1115/1.4023613
20.
Æsøy
,
V.
, and
Valland
,
H.
,
1996
, “
Hot Surface Assisted Compression Ignition of Natural Gas in a Direct Injection Diesel Engine
,” SAE Paper No. 960767.10.4271/960767
21.
Æsøy
,
V.
, and
Valland
,
H.
,
1996
, “
The Influence of Natural Gas Composition on Ignition in a Direct Injection Gas Engine Using Hot Surface Assisted Compression Ignition
,”. SAE Paper No. 961934.10.4271/961934
22.
Pan
,
K.
, and
Wallace
,
J. S.
,
2017
, “
Numerical Studies of the Ignition Characteristics of a High-Pressure Gas Jet in Compression-Ignition Engines With Glow Plug Ignition Assist: Part 1–Operating Condition Study
,”
Int. J. Engine Res.
,
18
(
10
), pp.
1035
1054
.10.1177/1468087417699753
23.
Pan
,
K.
, and
Wallace
,
J. S.
,
2018
, “
Numerical Studies of the Ignition Characteristics of a High-Pressure Gas Jet in Compression Ignition Engines With Glow Plug Ignition Assist: Part 2-Effects of Multi-Opening Glow Plug Shields
,”
Int. J. Engine Res.
,
19
(
9
), pp.
977
1001
.10.1177/1468087417736997
24.
Kuzuyama
,
H.
,
Machida
,
M.
,
Akihama
,
K.
,
Inagaki
,
K.
, et al.,
2007
,., “
A Study on Natural Gas Fueled Homogeneous Charge Compression Ignition Engine - Expanding the Operating Range and Combustion Mode Switching
,” SAE Paper No. 2007-01-0176.10.4271/2007-01-0176
25.
Pourfallah
,
M.
,
Armin
,
M.
, and
Ranjbar
,
A. A.
,
2021
, “
A Numerical Study on the Effect of Thermal and Charge Stratification on the HCCI Natural Gas Engine
,”
Int. J. Ambient Energy
,
42
(
12
), pp.
1386
1395
.10.1080/01430750.2019.1608860
26.
Lawler
,
B.
,
Lacey
,
J.
,
Güralp
,
O.
,
Najt
,
P.
, and
Filipi
,
Z.
,
2018
, “
HCCI Combustion With an Actively Controlled Glow Plug: The Effects on Heat Release, Thermal Stratification, Efficiency, and Emissions
,”
Appl. Energy
,
211
(
211
), pp.
809
819
.10.1016/j.apenergy.2017.11.089
27.
Judith
,
J. A.
,
Kettner
,
M.
,
Koch
,
T.
,
Schwarz
,
D.
, and
Klaissle
,
M.
,
2023
, “
Experimental Study on Controlled Hot Surface Assisted Compression Ignition (HSACI) in a Naturally Aspirated Single Cylinder Gas Engine
,”
Int. J. Engine Res.
,
24
(
3
), pp.
1041
1062
.10.1177/14680874211073413
28.
Hanjalic
,
K.
,
Popovac
,
M.
, and
Hadziabdic
,
M.
,
2004
, “
A Robust Near-Wall Elliptic-Relaxation Eddy-Viscosity
,”
Int. J. Heat Fluid Flow
,
25
(
6
), pp.
1047
1051
.10.1016/j.ijheatfluidflow.2004.07.005
29.
Popovac
,
M.
, and
Hanjalic
,
K.
,
2005
, “
A Combined WF and ItW Treatment of Wall Boundary Conditions for Turbulent Convective Heat Transfer
,”
9th UK National Heat Transfer Conference
, Manchester, UK, Sept. 5–6.
30.
Popovac
,
M.
, and
Hanjalic
,
K.
,
2007
, “
Compound Wall Treatment for RANS Computation of Complex Turbulent Flows and Heat Transfer
,”
Flow Turbul. Combust.
,
78
(
2
), pp.
177
202
.10.1007/s10494-006-9067-x
31.
Han
,
Z.
, and
Reitz
,
R. D.
,
1997
, “
A Temperature Wall Function Formulation for Variable-Density Turbulent Flows With Application to Engine Convective Heat Transfer Modeling
,”
Int. J. Heat Mass Transfer
,
40
(
3
), pp.
613
625
.10.1016/0017-9310(96)00117-2
32.
Silvis
,
W. M.
,
1997
, “
An Algorithm for Calculating the Air/Fuel Ratio From Exhaust Emissions
,” SAE Paper No. 970514.10.4271/970514
33.
Heywood
,
J.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
34.
Satopaa
,
V.
,
Albrecht
,
J.
,
Irwin
,
D.
, and
Raghavan
,
B.
,
2011
, “
Finding a “Kneedle” in a Haystack: Detecting Knee Points in System Behavior
,”
2011 31st International Conference on Distributed Computing Systems Workshops
, Minneapolis, MN, June 20–24, pp.
166
171
.10.1109/ICDCSW.2011.20
35.
Neurohr
,
M.
,
2018
, “
Untersuchung Von Zyklischen Verbrennungsschwankungen Eines Ottomotors im HCCI-Betrieb
,” Ph.D. thesis,
Karlsruhe Institute of Technology
, Logos, Berlin, Germany.
36.
Eng
,
J.
,
2002
, “
Effect of Pressure Waves in HCCI Combustion
,” SAE Paper No. 2002-01-2859.10.4271/2002-01-2859
37.
Bargende
,
M.
,
Spicher
,
U.
,
Köhler
,
U.
, and
Schwarz
,
F.
,
2002
,
Entwicklung Eines Allgemeingültigen Restgasmodells Für Verbrennungsmotoren
,
FVV-Informationstagung Motoren
, Nürnberg, Herbst 2002, Frankfurt 2002 (FVV-Heft. R 517).
38.
Dernotte
,
J.
,
Dec
,
J. E.
, and
Ji
,
C.
,
2014
, “
Investigation of the Sources of Combustion Noise in HCCI Engines
,”
SAE Int. J. Engines
,
7
(
2
), pp.
730
761
.10.4271/2014-01-1272
39.
Gentz
,
G.
,
Dernotte
,
J.
,
Ji
,
C.
,
Lopez Pintor
,
D.
, et al.,
2019
, “
Combustion-Timing Control of Low-Temperature Gasoline Combustion (LTGC) Engines by Using Double Direct-Injections to Control Kinetic Rates
,” SAE Paper No. 2019-01-1156.10.4271/2019-01-1156
40.
Sjöberg
,
M.
,
Dec
,
J. E.
,
Babajimopoulos
,
A.
, and
Assanis
,
D.
,
2004
, “
Comparing Enhanced Natural Thermal Stratification Against Retarded Combustion Phasing for Smoothing of HCCI Heat-Release Rates
,” SAE Paper No. 2004-01-2994.10.4271/2004-01-2994
41.
Vressner
,
A.
,
Lundin
,
A.
,
Christensen
,
M.
,
Tunestal
,
P.
, et al.,
2003
, “
Pressure Oscillations During Rapid HCCI Combustion
,” SAE Technical Paper. 2003-01-3217.10.4271/2003-01-3217
42.
Dernotte
,
J.
,
Dec
,
J. E.
, and
Ji
,
C.
,
2015
, “
Energy Distribution Analysis in Boosted HCCI-Like/LTGC Engines - Understanding the Trade-Offs to Maximize the Thermal Efficiency
,”
SAE Int. J. Engines
,
8
(
3
), pp.
956
980
.10.4271/2015-01-0824
43.
Olesky
,
L. M.
,
Lavoie
,
G. A.
,
Assanis
,
D. N.
,
Wooldridge
,
M. S.
, and
Martz
,
J. B.
,
2014
, “
The Effects of Diluent Composition on the Rates of HCCI and Spark Assisted Compression Ignition Combustion
,”
Appl. Energy
,
124
(
3
), pp.
186
198
.10.1016/j.apenergy.2014.03.015
44.
Judith
,
J. A.
,
Kettner
,
M.
,
Schwarz
,
D.
,
Klaissle
,
M.
, et al.,
2022
, “
Hot Surface Assisted Compression Ignition (HSACI) as an Approach to Extend the Operating Limits of a Natural Gas Fueled HCCI Engine
,” SAE Paper No. 2022-32-0027.10.4271/2022-32-0027
45.
Zabetakis
,
M. G.
,
1965
, “
Flammability Characteristics of Combustible Gases and Vapors
,” Bulletin 627, Bureau of Mines, Washington, DC.
46.
Valera-Medina
,
A.
,
Amer-Hatem
,
F.
,
Azad
,
A. K.
,
Dedoussi
,
I. C.
,
de Joannon
,
M.
,
Fernandes
,
R. X.
,
Glarborg
,
P.
, et al.,
2021
, “
Review on Ammonia as a Potential Fuel: From Synthesis to Economics
,”
Energy Fuels
,
35
(
9
), pp.
6964
7029
.10.1021/acs.energyfuels.0c03685
47.
Lhuillier
,
C.
,
Brequigny
,
P.
,
Contino
,
F.
, and
Rousselle
,
C.
,
2019
, “
Combustion Characteristics of Ammonia in a Modern Spark-Ignition Engine
,” SAE Paper No. 2019-24-0237.10.4271/2019-24-0237
48.
Pochet
,
M.
,
Jeanmart
,
H.
, and
Contino
,
F.
,
2020
, “
A 22:1 Compression Ratio Ammonia-Hydrogen HCCI Engine: Combustion, Load, and Emission Performances
,”
Front. Mech. Eng.
,
6
, p.
52
.10.3389/fmech.2020.00043
49.
Reiter
,
A. J.
, and
Kong
,
S.-C.
,
2008
, “
Demonstration of Compression-Ignition Engine Combustion Using Ammonia in Reducing Greenhouse Gas Emissions
,”
Energy Fuels
,
22
(
5
), pp.
2963
2971
.10.1021/ef800140f
You do not currently have access to this content.