Abstract

Dilute combustion in spark-ignition engines has the potential to improve thermal efficiency by mitigating knock and by reducing throttling and wall heat losses. However, ignition and combustion processes can become unstable for dilute operation due to a lowered laminar flame speed, resulting in excessive cycle-to-cycle variability (CCV) of the combustion process. To compensate for the slower combustion in less reactive mixtures, a modified intake port geometry can be employed to generate a strong tumble flow in the cylinder and elevate turbulence levels around the spark plug, thereby promoting a faster transition to turbulent deflagration. Consequently, optimizing combustion chamber geometry and operating strategy is crucial to maximizing the benefits of using dilute combustion with enhanced in-cylinder turbulence across a wide range of operating conditions. Computational fluid dynamics (CFD) simulations can be utilized for virtual engine optimization tasks, but this would require the models to be truly predictive regarding the impact of changes to the engine design and operational parameters.

In this study, multicycle large-eddy simulations (LES) are performed for a direct-injection spark-ignition engine to investigate the model performance in predicting engine combustion characteristics with respect to changes in the intake configuration. A tumble plate that blocks the lower part of the intake port inlet is used to vary the tumble. A set of CFD models that have been recently developed are employed, which takes into account the drag of nonspherical droplets, flash-boiling behavior of liquid sprays, spray-wall interaction, surrogate formulation of a research-grade E10 gasoline, and fast chemical kinetic solvers. Simulation results are compared to experimental engine data in terms of cylinder pressure, apparent heat release rate, mass fraction burned timing, and flame images. It is found that LES employing the state-of-the-art CFD models are capable of properly predicting the spray processes and reproducing the measured mean cylinder pressure for the case with the tumble plate. On the other hand, the LES over-predicts the combustion rate during the early combustion stage and under-estimates the CCV, and these discrepancies become larger when the tumble plate is removed.

References

1.
EPA
,
2022
, “
Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2020
,” Environmental Protection Agency (EPA), accessed June 4, 2023, https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2020
2.
EPA and NHTSA
,
2020
, “
The Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule for Model Years 2021–2026 Passenger Cars and Light Trucks
,” Environmental Protection Agency (EPA), National Highway Traffic Safety Administration (
NHTSA
), Washington, DC, pp.
24174
25278
.https://www.federalregister.gov/documents/2020/04/30/2020-06967/the-safer-affordable-fuelefficient-safe-vehicles-rule-for-model-years-2021-2026-passenger-cars-and
3.
Nakata
,
K.
,
Nogawa
,
S.
,
Takahashi
,
D.
,
Yoshihara
,
Y.
,
Kumagai
,
A.
, and
Suzuki
,
T.
,
2015
, “
Engine Technologies for Achieving 45% Thermal Efficiency of S.I. Engine
,”
SAE Int. J. Engines
,
9
(
1
), pp.
179
192
.10.4271/2015-01-1896
4.
Matsuo
,
S.
,
Ikeda
,
E.
,
Ito
,
Y.
, and
Nishiura
,
H.
,
2016
, “
SAE World Congress and Exhibition
,” SAE Paper No. 2016-01-0684. 10.4271/2016-01-0684
5.
Lee
,
B.
,
Oh
,
H.
,
Han
,
S.
,
Woo
,
S.
, and
Son
,
J.
,
2017
, “
Development of High Efficiency Gasoline Engine With Thermal Efficiency Over 42%
,” SAE Paper No. 2017-01-2229.10.4271/2017-01-2229
6.
Yoshida
,
N.
,
2019
, “
Development of New I4 2.5 L Gasoline Direct Injection Engine
,” SAE Paper No. 2019-01-1199.10.4271/2019-01-1199
7.
Yoshihara
,
Y.
,
Nakata
,
K.
,
Takahashi
,
D.
,
Omura
,
T.
, and
Ota
,
A.
,
2016
, “
Development of High Tumble Intake-Port for High Thermal Efficiency Engines
,” SAE Paper No. 2016-01-0692.10.4271/2016-01-0692
8.
Hayashi
,
N.
,
Sugiura
,
A.
,
Abe
,
Y.
, and
Suzuki
,
K.
,
2017
, “
Development of Ignition Technology for Dilute Combustion Engines
,”
SAE Int. J. Engines
,
10
(
3
), pp.
984
995
.10.4271/2017-01-0676
9.
Dahms
,
R. N.
, and
Oefelein
,
J. C.
,
2016
, “
The Significance of Drop Non-Sphericity in Sprays
,”
Int. J. Multiph. Flow
,
86
, pp.
67
85
.10.1016/j.ijmultiphaseflow.2016.07.010
10.
Nguyen
,
T. M.
,
Dahms
,
R. N.
,
Pickett
,
L. M.
, and
Tagliante
,
F.
,
2022
, “
The Corrected Distortion Model for Lagrangian Spray Simulation of Transcritical Fuel Injection
,”
Int. J. Multiph. Flow
,
148
, p.
103927
.10.1016/j.ijmultiphaseflow.2021.103927
11.
Torelli
,
R.
,
Guo
,
H.
,
Som
,
S.
,
Sjöberg
,
M.
,
Kim
,
N.
, and
Reuss
,
D.
,
2021
, “
Spray/Flow Interactions in Engines
,”
Department of Energy Vehicle Technologies Office Annual Merit Review
, Virtual, June 21–25.https://www.energy.gov/sites/default/files/2021-06/ace167_torelli_2021_o_5-13_1027pm_LR_T M.pdf
12.
Torelli
,
R.
,
Scarcelli
,
R.
,
Som
,
S.
,
Zhu
,
X.
,
Lee
,
S.-Y.
,
Naber
,
J.
,
Markt
,
D.
, and
Raessi
,
M.
,
2020
, “
Toward Predictive and Computationally Affordable Lagrangian–Eulerian Modeling of Spray–Wall Interaction
,”
Int. J. Engine Res.
,
21
(
2
), pp.
263
280
.10.1177/1468087419870619
13.
Torelli
,
R.
,
Kim
,
N.
,
Sjöberg
,
M.
, and
Som
,
S.
,
2022
, “
Large Eddy Simulations of Spray-Wall Interaction in a Direct-Injection Optical Engine
,”
Large-Eddy Simulation for Energy Conversion in Electric and Combustion Engines (LES4ECE)
, June 17–18.
14.
Wagnon
,
S. W.
,
2021
, “
Development of an Optimized Gasoline Surrogate Formulation for PACE Experiments and Simulations
,” accessed June 4, 2023, https://www.energy.gov/sites/default/files/2021-07/VTO_2020_APR_ADV_FUEL_COMPILED_REPORT_JUL_7_2021_compliant_.pdf
15.
Cheng
,
S.
,
Saggese
,
C.
,
Kang
,
D.
,
Goldsborough
,
S. S.
,
Wagnon
,
S. W.
,
Kukkadapu
,
G.
,
Zhang
,
K.
,
Mehl
,
M.
, and
Pitz
,
W. J.
,
2021
, “
Autoignition and Preliminary Heat Release of Gasoline Surrogates and Their Blends With Ethanol at Engine-Relevant Conditions: Experiments and Comprehensive Kinetic Modeling
,”
Combust. Flame
,
228
, pp.
57
77
.10.1016/j.combustflame.2021.01.033
16.
McNenly
,
M. J.
,
Whitesides
,
R. A.
, and
Flowers
,
D. L.
,
2015
, “
Faster Solvers for Large Kinetic Mechanisms Using Adaptive Preconditioners
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
581
587
.10.1016/j.proci.2014.05.113
17.
Lapointe
,
S.
,
Whitesides
,
R. A.
, and
McNenly
,
M. J.
,
2019
, “
Sparse, Iterative Simulation Methods for One-Dimensional Laminar Flames
,”
Combust. Flame
,
204
, pp.
23
32
.10.1016/j.combustflame.2019.02.030
18.
Reuss
,
D. L.
,
Kim
,
N.
, and
Sjöberg
,
M.
,
2023
, “
The Influence of Intake Flow and Coolant Temperature on Gasoline Spray Morphology During Early-Injection DISI Operation
,”
Int. J. Engine Res.
,
24
(
5
), pp.
1813
1839
.10.1177/14680874221104301
19.
Kim
,
N.
,
Vuilleumier
,
D.
, and
Sjöberg
,
M.
,
2021
, “
Effects of Injection Timing and Duration on Fuel-Spray Collapse and Wall-Wetting in a Stratified Charge SI Engine
,” SAE Paper No. 2021-01-0544. 10.4271/2021-01-0544
20.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
, 1st ed.,
McGraw-Hill
,
New York
.
21.
Sjöberg
,
M.
,
Vuilleumier
,
D.
,
Kim
,
N.
,
Yokoo
,
N.
,
Tomoda
,
T.
, and
Nakata
,
K.
,
2020
, “
On the Role of Nitric Oxide for the Knock-Mitigation Effectiveness of EGR in a DISI Engine Operated With Various Gasoline Fuels
,”
SAE Int. J. Adv. Curr. Pract. Mobil.
,
2
(
1
), pp.
272
291
.10.4271/2019-01-2150
22.
Convergent Science Inc.
,
2020
, “
CONVERGE 3.0 Manual
,” Convergent Science Inc., Madison, WI.
23.
Poinsot
,
T.
,
2016
, “
Requirements and validations for LES tools in combustion
,”
Large-Eddy Simulation for Internal Combustion Engine (LES4ICE)
Rueil-Malmaison, France, Nov. 30–Dec. 1.
24.
Xu
,
C.
,
Som
,
S.
, and
Sjöberg
,
M.
,
2021
, “
Large Eddy Simulation of Lean Mixed-Mode Combustion Assisted by Partial Fuel Stratification in a Spark-Ignition Engine
,”
J. Energy Res. Technol.
,
143
(
7
), p.
072304
.10.1115/1.4050588
25.
Pomraning
,
E.
,
2020
, “
Development of Large Eddy Simulation Turbulence Models
,”
Ph.D. dissertation
,
University of Wisconsin-Madison
,
Madison, WI
.10.13140/2.1.2035.7929
26.
Reitz
,
R. D.
, and
Diwakar
,
R.
,
1987
, “
Structure of High-Pressure Fuel Sprays
,” SAE Paper No. 870598.10.4271/870598
27.
Beale
,
J. C.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Spray Atomization With the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model
,”
Atomization Sprays
,
9
(
6
), pp.
623
650
.10.1615/AtomizSpr.v9.i6.40
28.
Amsden
,
A. A.
,
O'Rourke
,
P. J.
, and
Butler
,
T. D.
,
1989
, “
KIVA-II: A Computer Program for Chemically Reactive Flows With Sprays
,”
Los Alamos, NM
, Los Alamos National laboratory Report No.
LA-11560-MS
.10.2172/6228444
29.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
,
Cambridge, UK
.
30.
Feng
,
Z.-G.
, and
Michaelides
,
E. E.
,
2001
, “
Drag Coefficients of Viscous Spheres at Intermediate and High Reynolds Numbers
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
841
849
.10.1115/1.1412458
31.
Feng
,
Z.-G.
, and
Michaelides
,
E. E.
,
2001
, “
Heat and Mass Transfer Coefficients of Viscous Spheres
,”
Int. J. Heat Mass Transfer
,
44
(
23
), pp.
4445
4454
.10.1016/S0017-9310(01)00090-4
32.
Richter
,
A.
, and
Nikrityuk
,
P. A.
,
2012
, “
Drag Forces and Heat Transfer Coefficients for Spherical, Cuboidal and Ellipsoidal Particles in Cross Flow at Sub-Critical Reynolds Numbers
,”
Int. J. Heat Mass Transf
er,
55
(
4
), pp.
1343
1354
.10.1016/j.ijheatmasstransfer.2011.09.005
33.
O'Rourke
,
P. J.
, and
Amsden
,
A. A.
,
1987
, “
The Tab Method for Numerical Calculation of Spray Droplet Breakup
,” SAE International Fall Fuels and Lubricants Meeting and Exhibition,
SAE
Paper No. 872089.10.4271/872089
34.
Faeth
,
G. M.
,
1977
, “
Current Status of Droplet and Liquid Combustion
,”
Prog. Energy Combust. Sci.
,
3
(
4
), pp.
191
224
.10.1016/0360-1285(77)90012-0
35.
Parrish
,
S. E.
, and
Zink
,
R. J.
,
2008
, “
Spray Characteristics of Multi-Hole Injectors Under Flash Boiling Conditions
,”
21st ILASS Americas
, Orlando, FL, May 18–20.
36.
Senda
,
J.
,
Hojyo
,
Y.
, and
Fujimoto
,
H.
,
1994
, “
Modelling of Atomization Process in Flash Boiling Spray
,” SAE Paper No. 941925.10.4271/941925
37.
Adachi
,
M.
,
McDonell
,
V. G.
,
Tanaka
,
D.
,
Senda
,
J.
, and
Fujimoto
,
H.
,
1997
, “
Characterization of Fuel Vapor Concentration Inside a Flash Boiling Spray
,” SAE Paper No. 970871.10.4271/970871
38.
Zeng
,
Y.
, and
Lee
,
C.-F. F.
,
2001
, “
An Atomization Model for Flash Boiling Sprays
,”
Combust. Sci. Technol.
,
169
(
1
), pp.
45
67
.10.1080/00102200108907839
39.
Pitsch
,
H.
,
2002
, “
A G-Equation Formulation for Large-Eddy Simulation of Premixed Turbulent Combustion
,” Annual Research Briefs, Center for Turbulence Research, Stanford, CA, p.
12
.https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=860AF79F3B371372A0D0A22012660984?doi=10.1.1.507.7338&rep=rep1&type=pdf
40.
O'Rourke
,
P. J.
, and
Amsden
,
A. A.
,
2000
, “
A Spray/Wall Interaction Submodel for the KIVA-3 Wall Film Model
,” SAE Paper No. 2000-01-0271.10.4271/2000-01-0271
41.
Kazmouz
,
S. J.
,
Scarcelli
,
R.
,
Kim
,
J.
,
Cheng
,
Z.
,
Liu
,
S.
,
Dai
,
M.
,
Pomraning
,
E.
,
Senecal
,
P. K.
, and
Lee
,
S.-Y.
,
2023
, “
High-Fidelity Energy Deposition Ignition Model Coupled With Flame Propagation Models at Engine-Like Flow Conditions
,”
ASME J. Eng. Gas Turbines Power
,
145
(
5
), p.
051022
.10.1115/1.4056098
42.
Kazmouz
,
S. J.
,
Scarcelli
,
R.
,
Cheng
,
Z.
,
Dai
,
M.
,
Pomraning
,
E.
,
Senecal
,
P. K.
, and
Sjöberg
,
M.
,
2022
, “
Coupling a Lagrangian-Eulerian Spark-Ignition Model With LES Combustion Models for Engine Simulations
,”
Sci. Tech. Energy Transition
,
77
, p.
10
.10.2516/stet/2022009
43.
Matekunas
,
F. A.
,
1983
, “
Modes and Measures of Cyclic Combustion Variability
,” SAE Paper No. 830337.10.4271/830337
You do not currently have access to this content.