Abstract

This work focuses on a dual-objective optimization of a 100 kWe externally fired micro-gas turbine utilizing the producer gas from a biomass gasifier. Although externally fired micro-gas turbines are convenient for resolving operability issues in biomass combined heat and power applications, these configurations are still lacking in efficiency compared to the commercial natural-gas fired microturbines. The main cause is the material temperature limitations in the recuperator and the current uneconomical use of high-temperature resistance materials. Toward the achievement of higher efficiency by keeping system economic viability, an optimization process is followed based on the Normal Constraint Method, which generates evenly distributed solutions of a Pareto front. The selected method can determine high-performance solutions, being unidentified by one-dimensional approaches, providing information about the distribution of critical cycle parameters, across the complete objective space by the evaluation of a relatively small set of Pareto points. These critical parameters are the pressure ratio, the recuperator temperature difference, and maximum temperature. The exergetic efficiency and the relative recuperator cost are the optimization objectives. The deterministic Nelder–Mead algorithm is used for the acquisition of Pareto solutions, along with a penalty-based method to perform the constrained optimization. The implemented optimization method can identify superior solutions compared to one-dimensional approaches, as the latter result in higher recuperator costs around 41–112% at the same exergetic efficiency, revealing that high-performance is not only restricted by the recuperator but also by the compressor operating range.

References

1.
Calderón
,
C.
,
Jossart
,
J.-M.
, and
Geelen
,
J.
,
2022
, “
Bioelectricity Statistical Report
,” Bioenergy Europe, Brussels, Belgium.
2.
Konečná
,
E.
,
Teng
,
S. Y.
, and
Máša
,
V.
,
2020
, “
New Insights Into the Potential of the Gas Microturbine in Microgrids and Industrial Applications
,”
Renewable Sustainable Energy Rev.
,
134
, p.
110078
.10.1016/j.rser.2020.110078
3.
Banihabib
,
R.
, and
Assadi
,
M.
,
2022
, “
The Role of Micro Gas Turbines in Energy Transition
,”
Energies
,
15
(
21
), p.
8084
.10.3390/en15218084
4.
Christodoulou
,
F.
,
Giannakakis
,
P.
, and
Kalfas
,
A. I.
,
2011
, “
Performance Benefits of a Portable Hybrid Micro-Gas Turbine Power System for Automotive Applications
,”
ASME J. Eng. Gas Turbines Power
,
133
(
2
), p.
022301
.10.1115/1.4002041
5.
Asadullah
,
M.
,
2014
, “
Barriers of Commercial Power Generation Using Biomass Gasification Gas: A Review
,”
Renewable Sustainable Energy Rev.
,
29
, pp.
201
215
.10.1016/j.rser.2013.08.074
6.
Traverso
,
A.
,
Magistri
,
L.
,
Scarpellini
,
R.
, and
Massardo
,
A.
,
2003
, “
Demonstration Plant and Expected Performance of an Externally Fired Micro Gas Turbine for Distributed Power Generation
,”
ASME
Paper No. GT2003-38268.10.1115/GT2003-38268
7.
Rahman
,
M.
, and
Malmquist
,
A.
,
2016
, “
Modeling and Simulation of an Externally Fired Micro-Gas Turbine for Standalone Polygeneration Application
,”
ASME J. Eng. Gas Turbines Power
,
138
(
11
), p.
112301
.10.1115/1.4033510
8.
Harb
,
R.
,
Rivera-Tinoco
,
R.
,
Nemer
,
M.
,
Zeghondy
,
B.
, and
Bouallou
,
C.
,
2020
, “
Towards Synthetic Fuels Production From Biomass Gasification: Tar Content at Low Temperatures
,”
Biomass Bioenergy
,
137
, p.
105540
.10.1016/j.biombioe.2020.105540
9.
Basol
,
A. M.
,
Jenny
,
P.
,
Ibrahim
,
M.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2011
, “
Hot Streak Migration in a Turbine Stage: Integrated Design to Improve Aerothermal Performance
,”
ASME J. Eng. Gas Turbines Power
,
133
(
6
), p.
061901
.10.1115/1.4002349
10.
Kautz
,
M.
, and
Hansen
,
U.
,
2007
, “
The Externally-Fired Gas-Turbine (EFGT-Cycle) for Decentralized Use of Biomass
,”
Appl. Energy
,
84
(
7–8
), pp.
795
805
.10.1016/j.apenergy.2007.01.010
11.
Cordiner
,
S.
, and
Mulone
,
V.
,
2014
, “
Experimental–Numerical Analysis of a Biomass Fueled Microgeneration Power-Plant Based on Microturbine
,”
Appl. Therm. Eng.
,
71
(
2
), pp.
905
912
.10.1016/j.applthermaleng.2014.02.015
12.
Villarroel-Schneider
,
J.
,
Malmquist
,
A.
,
Araoz
,
J. A.
,
Martí-Herrero
,
J.
, and
Martin
,
A.
,
2019
, “
Performance Analysis of a Small-Scale Biogas-Based Trigeneration Plant: An Absorption Refrigeration System Integrated to an Externally Fired Microturbine
,”
Energies
,
12
(
20
), p.
3830
.10.3390/en12203830
13.
Barsali
,
S.
, and
Ludovici
,
G.
,
2010
, “
Externally Fired Micro Gas Turbine (75 kWe) for Combined Heat and Power Generation From Solid Biomass: Concept, Efficiency, Cost, and Experiences From Pilot and Commercial Plants in Italy
,”
Holzenergie-Symposium Potenzial Und Technik Zur Holzenergie-Nutzung,
Zürich, Switzerland, Sept. 17, pp.
1
16
.
14.
Camporeale
,
S. M.
,
Ciliberti
,
P. D.
,
Fortunato
,
B.
,
Torresi
,
M.
, and
Pantaleo
,
A. M.
,
2017
, “
Externally Fired Micro-Gas Turbine and Organic Rankine Cycle Bottoming Cycle: Optimal Biomass/Natural Gas Combined Heat and Power Generation Configuration for Residential Energy Demand
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041401
.10.1115/1.4034721
15.
Nascimento
,
M. A.
R.,
Rodrigues
,
L. O.
,
Santos
,
E. D.
,
Gomes
,
E. E. B.
,
Dias
,
F. L.
G., Velásques, E. I. G., and
Carrillo
,
R. A. M.
,
2013
, “
Micro Gas Turbine Engine: A Review
,”
Prog. Gas Turbine Perform.
,
125
, pp.
1
14
.10.5772/54444
16.
Ferrari
,
M. L.
,
Pascenti
,
M.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2010
, “
Micro Gas Turbine Recuperator: Steady-State and Transient Experimental Investigation
,”
ASME J. Eng. Gas Turbines Power
,
132
(
2
), p.
022301
.10.1115/1.3156822
17.
Xiao
,
G.
,
Yang
,
T.
,
Liu
,
H.
,
Ni
,
D.
,
Ferrari
,
M. L.
,
Li
,
M.
,
Luo
,
Z.
,
Cen
,
K.
, and
Ni
,
M.
,
2017
, “
Recuperators for Micro Gas Turbines: A Review
,”
Appl. Energy
,
197
, pp.
83
99
.10.1016/j.apenergy.2017.03.095
18.
Datta
,
A.
,
Ganguly
,
R.
, and
Sarkar
,
L.
,
2010
, “
Energy and Exergy Analyses of an Externally Fired Gas Turbine (EFGT) Cycle Integrated With Biomass Gasifier for Distributed Power Generation
,”
Energy
,
35
(
1
), pp.
341
350
.10.1016/j.energy.2009.09.031
19.
Vera
,
D.
,
Jurado
,
F.
,
De Mena
,
B.
, and
Schories
,
G.
,
2011
, “
Comparison Between Externally Fired Gas Turbine and Gasifier-Gas Turbine System for the Olive Oil Industry
,”
Energy
,
36
(
12
), pp.
6720
6730
.10.1016/j.energy.2011.10.036
20.
Soltani
,
S.
,
Mahmoudi
,
S. M. S.
,
Yari
,
M.
, and
Rosen
,
M. A.
,
2013
, “
Thermodynamic Analyses of an Externally Fired Gas Turbine Combined Cycle Integrated With a Biomass Gasification Plant
,”
Energy Convers. Manage.
,
70
, pp.
107
115
.10.1016/j.enconman.2013.03.002
21.
Gholamian
,
E.
,
Mahmoudi
,
S. S.
, and
Zare
,
V.
,
2016
, “
Proposal, Exergy Analysis and Optimization of a New Biomass-Based Cogeneration System
,”
Appl. Therm. Eng.
,
93
, pp.
223
235
.10.1016/j.applthermaleng.2015.09.095
22.
Khanmohammadi
,
S.
,
Atashkari
,
K.
, and
Kouhikamali
,
R.
,
2015
, “
Exergoeconomic Multi-Objective Optimization of an Externally Fired Gas Turbine Integrated With a Biomass Gasifier
,”
Appl. Therm. Eng.
,
91
, pp.
848
859
.10.1016/j.applthermaleng.2015.08.080
23.
Yang
,
X.-S.
, and
Deb
,
S.
,
2009
, “
Cuckoo Search Via Lévy Flights
,”
Proceedings of the 2009 World Congress on Nature and Biologically Inspired Computing (NaBIC)
, Coimbatore, Tamilnadu, India, Dec. 9–11, pp.
210
214
.10.1109/NABIC.2009.5393690
24.
Messac
,
A.
, and
Mattson
,
C. A.
,
2004
, “
Normal Constraint Method With Guarantee of Even Representation of Complete Pareto Frontier
,”
AIAA J.
,
42
(
10
), pp.
2101
2111
.10.2514/1.8977
25.
Nelder
,
J. A.
, and
Mead
,
R.
,
1965
, “
A Simplex Method for Function Minimization
,”
Comput. J.
,
7
(
4
), pp.
308
313
.10.1093/comjnl/7.4.308
26.
European Turbine Network (ETN),
2017
, “
Micro Gas Turbine Technology Summary: Research and Development for European Collaboration
,” European Turbine Network, Brussels, Belgium, accessed Feb. 7, 2023, https://etn.global/wp-content/uploads/2018/02/MGT-Technology-Summary-final-for-the-website.pdf
27.
Bollas
,
K. D.
,
Efstathiadis
,
T. G.
,
Mertzis
,
D. P.
, and
Kalfas
,
A. I.
,
2022
, “
Micro-Gas Turbine Cycle Configurations for Biomass Combined Heat and Power Plants
,”
ASME
Paper No. GT2022-80772.10.1115/GT2022-80772
28.
Caresana
,
F.
,
Pelagalli
,
L.
,
Comodi
,
G.
, and
Renzi
,
M.
,
2014
, “
Microturbogas Cogeneration Systems for Distributed Generation: Effects of Ambient Temperature on Global Performance and Components' Behavior
,”
Appl. Energy
,
124
, pp.
17
27
.10.1016/j.apenergy.2014.02.075
29.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.10.1021/ie4033999
30.
Goodwin
,
D. G.
,
Moffat
,
H. K.
, and
Speth
,
R. L.
,
2022
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Zenodo, Geneva, Switzerland, accessed Nov. 5, 2022, http://www.cantera.org
31.
De Paepe
,
W.
, and
Clymans
,
T.
,
2023
, “
Optimizing Internal Energy Streams in Micro Gas Turbines in Cogeneration Toward Flexible Heat-to-Power Ratio–Global Thermodynamic Performance Assessment and Specific Case Studies
,”
ASME J. Eng. Gas Turbines Power
,
145
(
5
), p.
051023
.10.1115/1.4056262
32.
Henke
,
M.
,
Klempp
,
N.
,
Hohloch
,
M.
,
Monz
,
T.
, and
Aigner
,
M.
,
2015
, “
Validation of a T100 Micro Gas Turbine Steady-State Simulation Tool
,”
ASME
Paper No. GT2015-42090.10.1115/GT2015-42090
33.
Cengel
,
Y. A.
,
2007
,
Heat and Mass Transfer: A Practical Approach
,
McGraw-Hill
, New York.
34.
Galanti
,
L.
, and
Massardo
,
A. F.
,
2011
, “
Micro Gas Turbine Thermodynamic and Economic Analysis up to 500 kWe Size
,”
Appl. Energy
,
88
(
12
), pp.
4795
4802
.10.1016/j.apenergy.2011.06.022
35.
Kotas
,
T. J.
,
2012
,
The Exergy Method of Thermal Plant Analysis
,
Paragon Publishing, Trowbridge, UK.
36.
Baina
,
F.
,
Malmquist
,
A.
,
Alejo
,
L.
,
Palm
,
B.
, and
Fransson
,
T. H.
,
2015
, “
Analysis of a High-Temperature Heat Exchanger for an Externally-Fired Micro Gas Turbine
,”
Appl. Therm. Eng.
,
75
, pp.
410
420
.10.1016/j.applthermaleng.2014.10.014
37.
Ferrari
,
M. L.
,
Sorce
,
A.
,
Pascenti
,
M.
, and
Massardo
,
A. F.
,
2011
, “
Recuperator Dynamic Performance: Experimental Investigation With a Microgas Turbine Test Rig
,”
Appl. Energy
,
88
(
12
), pp.
5090
5096
.10.1016/j.apenergy.2011.07.016
38.
Tilocca
,
G.
,
2021
, “
Reciprocating Engines and Microturbines: A Comparison of Distributed Generation Technologies
,” LinkedIn, accessed Feb. 10, 2023, https://www.linkedin.com/pulse/reciprocating-engines-microturbines-comparison-giuseppe-tilocca/
39.
McKinnon
,
K. I.
,
1998
, “
Convergence of the Nelder–Mead Simplex Method to a Nonstationary Point
,”
SIAM J. Optim.
,
9
(
1
), pp.
148
158
.10.1137/S1052623496303482
40.
Wessing
,
S.
,
2019
, “
Proper Initialization Is Crucial for the Nelder–Mead Simplex Search
,”
Optim. Lett.
,
13
(
4
), pp.
847
856
.10.1007/s11590-018-1284-4
41.
Yeniay
,
Ö.
,
2005
, “
Penalty Function Methods for Constrained Optimization With Genetic Algorithms
,”
Math. Comput. Appl.
,
10
(
1
), pp.
45
56
.10.3390/mca10010045
42.
Blank
,
J.
, and
Deb
,
K.
,
2020
, “
Pymoo: Multi-Objective Optimization in Python
,”
IEEE Access
,
8
, pp.
89497
89509
.10.1109/ACCESS.2020.2990567
43.
Garrett
Motion
,
2021
, “
Performance Catalog
Vol.
8
,” Garrett Motion, Torrance, CA, accessed Feb. 24, 2023, https://www.garrettmotion.com/wp-content/uploads/2021/03/Garrett_Performance_Turbocharger_Catalog_2021.pdf
44.
Semlitsch
,
B.
, and
Mihăescu
,
M.
,
2016
, “
Flow Phenomena Leading to Surge in a Centrifugal Compressor
,”
Energy
,
103
, pp.
572
587
.10.1016/j.energy.2016.03.032
You do not currently have access to this content.