Abstract

Uncertainties in measurements and gas path including manufacture tolerance and degradation effects unavoidably influence thrust regulation of gas turbine aero-engines. In this paper, a thrust command scheduling (TCS) controller is proposed based on current measurement precision levels and the improvement of the industrial sensor-based baseline controller, which aims at enhancing the uncertainty tolerance capabilities for a fleet of in-service gas turbine aero-engines. The TCS controller is fulfilled in two steps. A measurement-insensitive thrust mode is selected via random analysis, followed by a two-dimensional thrust command scheduling approach of a family of thrust maps. Industrial baseline controllers with common thrust modes, i.e., low-pressure shaft speed (N1) and engine pressure ratio (EPR) modes are designed as benchmarks. Simulations are conducted on a validated aero-thermal turbofan engine model with publically available uncertainty statistics. Simulation results at the takeoff state on the new and degraded engine fleets reveal that N1 mode is insensitive to measurement uncertainties but owns significant thrust deviation due to degradation effects. Conversely, EPR mode just has the opposite thrust control behavior, compared to N1 mode. The TCS controller regulates the degraded engine fleet with a tight thrust distribution and suppresses the thrust variation of N1 mode via utilizing the remaining N1 margin. Hence, the uncertainty tolerance benefits of the proposed controller are confirmed.

References

1.
Jafari
,
S.
, and
Nikolaidis
,
T.
,
2019
, “
Meta-Heuristic Global Optimization Algorithms for Aircraft Engines Modelling and Controller Design; A Review, Research Challenges, and Exploring the Future
,”
Prog. Aerosp. Sci.
,
104
, pp.
40
53
.10.1016/j.paerosci.2018.11.003
2.
Adibhatla
,
S.
,
Garg
,
S.
,
Griffith
,
S.
,
Karnofski
,
K.
,
Payne
,
N.
, and
Wood
,
B.
,
2018
, “
Propulsion Control Technology Development Roadmaps to Address NASA Aeronautics Research Mission Goals for Thrusts 3a and 4
,”
Proc. 2018 Joint Propulsion Conference
, Cincinnati, OH, July 9–11, p. 4732.https://ntrs.nasa.gov/citations/20180005340
3.
Simon
,
D. L.
,
Connolly
,
J. W.
, and
Culley
,
D. E.
,
2020
, “
Control Technology Needs for Electrified Aircraft Propulsion Systems
,”
ASME J. Eng. Gas Turbines Power
,
142
(
1
), p. 011025.10.1115/1.4044969
4.
Wei
,
Z.
,
Zhang
,
S.
,
Jafari
,
S.
, and
Nikolaidis
,
T.
,
2020
, “
Gas Turbine Aero-Engines Real Time on-Board Modelling: A Review, Research Challenges, and Exploring the Future
,”
Prog. Aerosp. Sci.
,
121
, p.
100693
.10.1016/j.paerosci.2020.100693
5.
Chen
,
Y.-Z.
,
Zhao
,
X.-D.
,
Xiang
,
H.-C.
, and
Tsoutsanis
,
E.
,
2021
, “
A Sequential Model-Based Approach for Gas Turbine Performance Diagnostics
,”
Energy
,
220
, p.
119657
.10.1016/j.energy.2020.119657
6.
Wei
,
Z.
,
Zhang
,
S.
,
Jafari
,
S.
, and
Nikolaidis
,
T.
,
2022
, “
Self-Enhancing Model-Based Control for Active Transient Protection and Thrust Response Improvement of Gas Turbine Aero-Engines
,”
Energy
,
242
, p.
123030
.10.1016/j.energy.2021.123030
7.
Zhang
,
J.
,
Tang
,
H.
, and
Chen
,
M.
,
2021
, “
Robust Design of an Adaptive Cycle Engine Performance Under Component Performance Uncertainty
,”
Aerosp. Sci. Technol
,
113
, p.
106704
.10.1016/j.ast.2021.106704
8.
Zhang
,
J.
,
Dong
,
P.
,
Tang
,
H.
,
Zheng
,
J.
,
Wang
,
J.
, and
Chen
,
M.
,
2021
, “
General Design Method of Control Law for Adaptive Cycle Engine Mode Transition
,”
AIAA J.
, 60(1), pp.
330
344
.10.2514/1.J060674
9.
Wang
,
J.
, and
Zheng
,
X.
,
2020
, “
Review of Geometric Uncertainty Quantification in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
142
(
7
), p.
070801
.10.1115/1.4047179
10.
Kurzke
,
J.
, and
Halliwell
,
I.
,
2018
,
Propulsion and Power: An Exploration of Gas Turbine Performance Modeling
,
Springer
, Cham, Switzerland.
11.
Chen
,
Y. Z.
,
Tsoutsanis
,
E.
,
Wang
,
C.
, and
Gou
,
L. F.
,
2023
, “
A Time-Series Turbofan Engine Successive Fault Diagnosis Under Both Steady-State and Dynamic Conditions
,”
Energy
,
263
, p.
125848
.10.1016/j.energy.2022.125848
12.
Wei
,
Z.
,
Jafari
,
S.
,
Zhang
,
S.
, and
Nikolaidis
,
T.
,
2021
, “
Hybrid Wiener Model: An on-Board Approach Using Post-Flight Data for Gas Turbine Aero-Engines Modelling
,”
Appl. Therm. Eng.
,
184
, p.
116350
.10.1016/j.applthermaleng.2020.116350
13.
Yin
,
F.
, and
Rao
,
A. G.
,
2020
, “
A Review of Gas Turbine Engine With Inter-Stage Turbine Burner
,”
Prog. Aerosp. Sci.
,
121
, p.
100695
.10.1016/j.paerosci.2020.100695
14.
Richter
,
H.
,
Connolly
,
J. W.
, and
Simon
,
D. L.
,
2020
, “
Optimal Control and Energy Management for Hybrid Gas-Electric Propulsion
,”
ASME J. Eng. Gas Turbines Power
,
142
(
9
), p.
091009
.10.1115/1.4047890
15.
Zaccaria
,
V.
,
Ferrari
,
M. L.
, and
Kyprianidis
,
K.
,
2020
, “
Adaptive Control of Microgas Turbine for Engine Degradation Compensation
,”
ASME J. Eng. Gas Turbines Power
,
142
(
4
), p.
041012
.10.1115/1.4044948
16.
Brown
,
H.
, and
Elgin
,
J. A.
,
1985
, “
Aircraft Engine Control Mode Analysis
,”
ASME J. Eng. Gas Turbines Power
,
107
(
4
), pp.
838
844
.10.1115/1.3239820
17.
Ravi
,
R.
,
Minto
,
K.
,
Grafton
,
M.
, and
Bansai
,
I.
,
1992
, “
Compensating for Manufacturing and Life-Cycle Variations in Aircraftengine Control Systems
,” Proc. 28th Joint Propulsion Conference and Exhibit, Nashville, TN, July 6–8,
AIAA
Paper No. 92-3869.10.2514/6.92-3869
18.
Ravi
,
R.
, and
Minto
,
K. D.
,
1993
, “
Analysis and Compensation of Plant Degradation Via Uncertainty Modeling
,”
IFAC Proc. Vol.
,
26
(
2
), pp.
815
818
.10.1016/S1474-6670(17)48845-8
19.
Dwyer
,
W. J.
,
1990
, “
Adaptive Model-Based Control Applied to a Turbofan Aircraft Engine
,”
Master's thesis
,
Massachusetts Institute of Technology
, Cambridge, MA.http://dspace.mit.edu/handle/1721.1/14056
20.
Chipperfield
,
A.
,
Fleming
,
P.
, and
Betteridge
,
H.
,
1997
, “
Control Mode Analysis for Advanced Concept Aero-Engines
,”
AIAA
Paper No. 97-3190.10.2514/6.1997-3190
21.
Chipperfield
,
A.
, and
Fleming
,
P.
,
1997
, “
More Integrated Gas Turbine Engine Controller Design
,”
Proc. Second International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications
,
Glasgow, UK, Sept. 2–4, pp.
357
363
.10.1049/cp:19971206
22.
Gurevich
,
O.
,
Smetanin
,
S.
, and
Trifonov
,
M.
,
2021
, “
Automatic Control to Reduce the Effect of Deterioration of Gas Turbine Engine Components on Its Performance Characteristics
,”
AIAA
Paper No. 2021-3734.10.2514/6.2021-3734
23.
Sun
,
X.
,
Jafari
,
S.
,
Miran Fashandi
,
S. A.
, and
Nikolaidis
,
T.
,
2021
, “
Compressor Degradation Management Strategies for Gas Turbine Aero-Engine Controller Design
,”
Energies
,
14
(
18
), p.
5711
.10.3390/en14185711
24.
Zaccaria
,
V.
,
Stenfelt
,
M.
,
Aslanidou
,
I.
, and
Kyprianidis
,
K. G.
,
2018
, “
Fleet Monitoring and Diagnostics Framework Based on Digital Twin of Aero-Engines
,”
ASME
Paper No. GT2018-76414.10.1115/GT2018-76414
25.
Zaccaria
,
V.
,
Fentaye
,
A. D.
,
Stenfelt
,
M.
, and
Kyprianidis
,
K. G.
,
2020
, “
Probabilistic Model for Aero-Engines Fleet Condition Monitoring
,”
Aerospace
,
7
(
6
), p.
66
.10.3390/aerospace7060066
26.
Litt
,
J. S.
,
Parker
,
K. I.
, and
Chatterjee
,
S.
,
2003
, “
Adaptive Gas Turbine Engine Control for Deterioration Compensation Due to Aging
,” NASA, Cleveland, OH, Report No.
NASA/TM-2003-212607
.https://ntrs.nasa.gov/api/citations/20040001041/downloads/20040001041.pdf
27.
Litt
,
J.
, and
Sowers
,
T.
,
2006
, “
Evaluation of an Outer Loop Retrofit Architecture for Intelligent Turbofan Engine Thrust Control
,”
AIAA
Paper No. 2006-5103.10.2514/6.2006-5103
28.
Litt
,
J.
,
Turso
,
J.
,
Shah
,
N.
,
Sowers
,
T.
, and
Owen
,
A.
,
2005
, “
A Demonstration of a Retrofit Architecture for Intelligent Control and Diagnostics of a Turbofan Engine
,”
AIAA
Paper No. 2005-6905.10.2514/6.2005-6905
29.
Connolly
,
J. W.
,
Csank
,
J.
, and
Chicatelli
,
A.
,
2016
, “
Advanced Control Considerations for Turbofan Engine Design
,”
AIAA
Paper No. 2016-4653.10.2514/6.2016-4653
30.
Connolly
,
J. W.
,
Csank
,
J.
,
Chicatelli
,
A.
, and
Kilver
,
J.
,
2013
, “
Model-Based Control of a Nonlinear Aircraft Engine Simulation Using an Optimal Tuner Kalman Filter Approach
,”
AIAA
Paper No. 2013-4002.10.2514/6.2013-4002
31.
Connolly
,
J.
,
Chicatelli
,
A.
, and
Garg
,
S.
,
2012
, “
Model-Based Control of an Aircraft Engine Using an Optimal Tuner Approach
,”
AIAA
Paper No. 2012-4257.10.2514/6.2012-4257
32.
EASA
,
2015
,
Certification Specifications for Engines CS-E Amendment-4
,
European Aviation Safety Agency
, Cologne, Germany.
33.
Kurzke
,
J.
,
2014
, “
Some Applications of the Monte Carlo Method to Gas Turbine Performance Simulations
,”
ASME
Paper No. 97-GT-048.10.1115/97-GT-048
34.
Sallee
,
G.
,
1978
, “
Performance Deterioration Based on Existing (Historical) Data; JT9D Jet Engine Diagnostics Program
,”
Pratt and Whitney
,
East Hartford, CT
, Report No.
NASA-CR-135448
.https://ntrs.nasa.gov/citations/19800013837
35.
Hanachi
,
H.
,
Mechefske
,
C.
,
Liu
,
J.
,
Banerjee
,
A.
, and
Chen
,
Y.
,
2018
, “
Performance-Based Gas Turbine Health Monitoring, Diagnostics, and Prognostics: A Survey
,”
IEEE Trans. Reliab.
,
67
(
3
), pp.
1340
1363
.10.1109/TR.2018.2822702
36.
Tsoutsanis
,
E.
,
Meskin
,
N.
,
Benammar
,
M.
, and
Khorasani
,
K.
,
2016
, “
A Dynamic Prognosis Scheme for Flexible Operation of Gas Turbines
,”
Appl. Energy
,
164
, pp.
686
701
.10.1016/j.apenergy.2015.11.104
37.
Abernethy
,
RJ.
, and
Thompson
,
J.
,
1973
, “
Uncertainty in Gas Turbine Measurements
,”
AIAA
Paper No. 1973-1230.10.2514/6.1973-1230
38.
Li
,
Y. G.
,
2010
, “
Gas Turbine Performance and Health Status Estimation Using Adaptive Gas Path Analysis
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
041701
.10.1115/1.3159378
39.
ISO
,
2009
, “
ISO 2314 Gas turbines–Acceptance Tests
,” ISO, Geneva, Switzerland.
40.
Culmone
,
M. V.
,
Garcia-Rosa
,
N.
, and
Carbonneau
,
X.
,
2016
, “
Sensitivity Analysis and Experimental Validation of Transient Performance Predictions for a Short-Range Turbofan
,”
ASME
Paper No. GT2016-57257.10.1115/GT2016-57257
41.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
2004
,
Gas Turbine Performance
,
Wiley
, Oxford, UK.
42.
Zhang
,
J.
,
Tang
,
H.
, and
Chen
,
M.
,
2019
, “
Linear Substitute Model-Based Uncertainty Analysis of Complicated Non-Linear Energy System Performance (Case Study of an Adaptive Cycle Engine)
,”
Appl. Energy
,
249
, pp.
87
108
.10.1016/j.apenergy.2019.04.138
43.
Reitz
,
G.
,
Kellersmann
,
A.
, and
Friedrichs
,
J.
,
2018
, “
Full High Pressure Compressor Investigations to Determine Aerodynamic Changes Due to Deterioration
,”
ASME
Paper No. GT2018-76644.10.1115/GT2018-76644
44.
Kreiner
,
A.
, and
Lietzau
,
K.
,
2000
, “
The Use of Onboard Real-Time Models for Jet Engine Control
,” MTU Technical Report, Munich, Germany.https://www.yumpu.com/en/document/view/11154909/the-use-of-onboard-real-time-models-formtu-aero-engines
45.
Spang
,
H. A.
, III
,., and
Brown
,
H.
,
1999
, “
Control of Jet Engines
,”
Control Eng. Pract
,
7
(
9
), pp.
1043
1059
. 10.1016/S0967-0661(99)00078-7
46.
Csank
,
J.
,
May
,
R.
,
Litt
,
J.
, and
Guo
,
T.-H.
,
6629
, “
Control Design for a Generic Commercial Aircraft Engine
,”
AIAA
Paper No. 2010-6629.10.2514/6.2010-6629
47.
Liu
,
Y.
,
Jafari
,
S.
, and
Nikolaidis
,
T.
,
2021
, “
Advanced Optimization of Gas Turbine Aero-Engine Transient Performance Using Linkage-Learning Genetic Algorithm: Part II, Optimization in Flight Mission and Controller Gains Correlation Development
,”
Chin. J. Aeronaut.
,
34
(
4
), pp.
568
588
.10.1016/j.cja.2020.07.037
48.
Montazeri-Gh
,
M.
, and
Jafari
,
S.
,
2011
, “
Evolutionary Optimization for Gain Tuning of Jet Engine Min-Max Fuel Controller
,”
J. Propul. Power
,
27
(
5
), pp.
1015
1023
.10.2514/1.B34185
49.
Liu
,
Y.
,
Jafari
,
S.
, and
Nikolaidis
,
T.
,
2021
, “
Advanced Optimization of Gas Turbine Aero-Engine Transient Performance Using Linkage-Learning Genetic Algorithm: Part I, Building Blocks Detection and Optimization in Runway
,”
Chin. J. Aeronaut.
,
34
(
4
), pp.
526
539
.10.1016/j.cja.2020.07.034
50.
Ma
,
Y.
,
Liu
,
J.
,
Zhu
,
L.
,
Li
,
Q.
,
Liu
,
H.
, and
Yu
,
D.
,
2022
, “
Accommodation of Multishaft Gas Turbine Switching Control Gain Tuning Problem to Inlet Guide Vane Position
,”
ASME J. Eng. Gas Turbines Power
,
144
(
3
), p.
031014
.10.1115/1.4052559
51.
Jaw
,
L. C.
, and
Mattingly
,
J. D.
,
2009
,
Aircraft Engine Controls: Design, System Analysis, and Health Monitoring
,
American Institute of Aeronautics and Astronautics
, Reston, VA.
52.
Ogaji
,
S. O. T.
,
Li
,
Y. G.
,
Sampath
,
S.
, and
Singh
,
R.
,
2003
, “
Gas Path Fault Diagnosis of a Turbofan Engine From Transient Data Using Artificial Neural Networks
,”
ASME
Paper No. GT2003-38423.10.1115/GT2003-38423
53.
Musa
,
G.
,
Igie
,
U.
,
Di Lorenzo
,
G.
,
Alrashed
,
M.
, and
Navaratne
,
R.
,
2022
, “
Gas Turbine Compressor Washing Economics and Optimization Using Genetic Algorithm
,”
ASME J. Eng. Gas Turbines Power
,
144
(
9
), p.
091012
.10.1115/1.4055187
54.
Mattingly
,
J. D.
,
2002
,
Aircraft Engine Design
,
AIAA
, Reston, VA.
55.
Litt
,
J. S.
,
Sowers
,
T. S.
, and
Garg
,
S.
,
2007
, “
A Retro-Fit Control Architecture to Maintain Engine Performance With Usage
,”
Glenn Research Center, National Aeronautics and Space Administration
,
Cleveland, OH
, Report No.
NASA/TM-2007-214977
.https://ntrs.nasa.gov/citations/20070032926
56.
Bennett
,
G. W.
,
Adibhatla
,
S.
, and
Wiseman
,
M. W.
,
2002
, “
Methods and Apparatus for Trimming Engine Control Systems
,” U.S. Patent No.
6,459,963
.https://patents.google.com/patent/US6459963
You do not currently have access to this content.