Abstract

Parcel-based simulations are the most common method to simulate fuel sprays, especially for reacting conditions, due to their lower computational cost compared to more highly resolved simulations. It is important, however, to understand how spray boundary conditions are used to initialize the parcels that represent the atomizing fluid affect downstream conditions and overall simulation performance. Traditionally, when parcel simulations are used, the injector tip geometry is either significantly simplified or removed altogether due to resolution limits. Recent advances in computational power and numerical methods, however, have made it possible to resolve flow through these features. Previous work has shown some potential effects of even simple injector tip geometries, and this study investigates the effect of very detailed nozzle geometries on parcel-based simulations that have typically ignored these details. Four different parameters were investigated: whether a simulation includes a detailed injector tip geometry or a flat surface; whether parcels are initialized at the counterbore exit, which is more common, or at the nozzle exit; the use of an experimentally derived rate of injection or one-way coupling with a separate internal nozzle volume of fluid (VOF) simulation; the use of nominal or measured injector geometry. Simulations were compared using both global penetrations as well as local data near the injector. Spray penetration and other global measures showed limited sensitivity to boundary conditions/initialization procedure, but local data such as the local liquid volume fraction showed greater variation between the conditions, which may have an impact on mixing and combustion predictions in engine applications.

References

1.
MIT Energy Initiative,
2019
, “
Insights Into Future Mobility
,”
MIT Energy Initiative
,
Cambridge, MA
, p.
220
.
2.
International Energy Agency
,
2021
, “
Global EV Outlook 2021 - Accelerating Ambitions Despite the Pandemic
,”
Global EV Outlook
,
France
, p.
101
.https://iea.blob.core.windows.net/assets/ed5f4484-f556-4110-8c5c-4ede8bcba637/GlobalEVOutlook2021.pdf
3.
Ra
,
Y.
, and
Reitz
,
R.
,
2009
, “
A Vaporization Model for Discrete Multi-Component Fuel Sprays
,”
Int. J. Multiphase Flow
,
35
(
2
), pp.
101
117
.10.1016/j.ijmultiphaseflow.2008.10.006
4.
Yue
,
Z.
, and
Reitz
,
R. D.
,
2019
, “
Application of an Equilibrium-Phase Spray Model to Multicomponent Gasoline Direct Injection
,”
Energy Fuels
,
33
(
4
), pp.
3565
3575
.10.1021/acs.energyfuels.8b04435
5.
Ren
,
Z. Y.
,
Zhang
,
L.
, and
Ren
,
X. H.
,
2018
, “
A Hybrid Multi-Component Vaporization Model for the Vaporization Simulation of Petroleum Fuel Drops
,”
Kung Cheng Je Wu Li Hsueh Pao/J. Eng. Thermophys.
,
39
, pp.
2326
2332
.
6.
Neroorkar
,
K.
, and
Schmidt
,
D.
,
2011
, “
Modeling of Vapor-Liquid Equilibrium of Gasoline-Ethanol Blended Fuels for Flash Boiling Simulations
,”
Fuel
,
90
(
2
), pp.
665
673
.10.1016/j.fuel.2010.09.035
7.
Duronio
,
F.
,
Ranieri
,
S.
,
Montanaro
,
A.
,
Allocca
,
L.
, and
De Vita
,
A.
,
2021
, “
ECN Spray G Injector: Numerical Modelling of Flash-Boiling Breakup and Spray Collapse
,”
Int. J. Multiphase Flow
,
145
, p.
103817
.10.1016/j.ijmultiphaseflow.2021.103817
8.
Chang
,
M.
,
Lee
,
Z.
,
Park
,
S.
, and
Park
,
S.
,
2020
, “
Characteristics of Flash Boiling and Its Effects on Spray Behavior in Gasoline Direct Injection Injectors: A Review
,”
Fuel
,
271
, p.
117600
.10.1016/j.fuel.2020.117600
9.
Duronio
,
F.
,
De Vita
,
A.
,
Allocca
,
L.
, and
Anatone
,
M.
,
2020
, “
Gasoline Direct Injection Engines – a Review of Latest Technologies and Trends. Part 1: Spray Breakup Process
,”
Fuel
,
265
, p.
116948
.10.1016/j.fuel.2019.116948
10.
Malaguti
,
S.
,
Fontanesi
,
S.
,
Cantore
,
G.
,
Montanaro
,
A.
, and
Allocca
,
L.
,
2013
, “
Modelling of Primary Breakup Process of a Gasoline Direct Engine Multi-Hole Spray
,”
Atom. Sprays
,
23
(
10
), pp.
861
888
.10.1615/AtomizSpr.2013005867
11.
Chryssakis
,
C.
, and
Assanis
,
D. N.
,
2008
, “
A Unified Fuel Spray Breakup Model for Internal Combustion Engine Applications
,”
Atom. Sprays
,
18
(
5
), pp.
375
426
.10.1615/AtomizSpr.v18.i5.10
12.
Kong
,
S. C.
,
Senecal
,
P. K.
, and
Reitz
,
R. D.
,
1999
, “
Developments in Spray Modeling in Diesel and Direct-Injection Gasoline Engines
,”
Oil Gas Sci. Technol.
,
54
(
2
), pp.
197
204
.10.2516/ogst:1999015
13.
Tu
,
P.-W.
,
Xu
,
H.
,
Srivastava
,
D. K.
,
Dean
,
K.
,
Jing
,
D.
,
Cao
,
L.
,
Weall
,
A.
, and
Venus
,
J. K.
,
2015
, “
Numerical Investigation of GDI Injector Nozzle Geometry on Spray Characteristics
,”
SAE Technical Paper No. 2015-01-1906
.10.4271/2015-01-1906
14.
Shost
,
M. A.
,
Lai
,
M.-C.
,
Befrui
,
B.
,
Spiekermann
,
P.
, and
Varble
,
D. L.
,
2014
, “
GDi Nozzle Parameter Studies Using LES and Spray Imaging Methods
,”
SAE
Paper No. 2014-01-1434.10.4271/2014-01-1434
15.
Van Dam
,
N.
, and
Rutland
,
C.
,
2016
, “
Adapting Diesel Large-Eddy Simulation Spray Models for Direct-Injection Spark-Ignition Applications
,”
Int. J. Engine Res.
,
17
(
3
), pp.
291
315
.10.1177/1468087415572034
16.
Quan
,
S.
,
Senecal
,
P. K.
,
Pomraning
,
E.
,
Xue
,
Q.
,
Hu
,
B.
,
Rajamohan
,
D.
,
Deur
,
J. M.
, and
Som
,
S.
,
2016
, “
A One-Way Coupled Volume of Fluid and Eulerian-Lagrangian Method for Simulating Sprays
,”
ASME
Paper No. ICEF2016-9390.10.1115/ICEF2016-9390
17.
Saha
,
K.
,
Quan
,
S.
,
Battistoni
,
M.
,
Som
,
S.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2017
, “
Coupled Eulerian Internal Nozzle Flow and Lagrangian Spray Simulations for GDI Systems
,”
SAE
Paper No. 2017-01-0834.10.4271/2017-01-0834
18.
Bode
,
M.
,
Falkenstein
,
T.
,
Le Chenadec
,
V.
,
Kang
,
S.
,
Pitsch
,
H.
,
Arima
,
T.
, and
Taniguchi
,
H.
,
2015
, “
A New Euler/Lagrange Approach for Multiphase Simulations of a Multi-Hole GDI Injector
,”
SAE
Paper No. 2015-01-0949.10.4271/2015-01-0949
19.
Mohan
,
B.
,
Badra
,
J.
,
Sim
,
J.
, and
Im
,
H. G.
,
2021
, “
Coupled in-Nozzle Flow and Spray Simulation of Engine Combustion Network Spray-G Injector
,”
Int. J. Engine Res.
,
22
(
9
), pp.
2982
2996
.10.1177/1468087420960612
20.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Richards
,
K. J.
, and
Som
,
S.
,
2014
, “
Grid-Convergent Spray Models for Internal Combustion Engine Computational Fluid Dynamics Simulations
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p. 012204.10.1115/1.4024861
21.
Som
,
S.
,
Longman
,
D.
,
Aithal
,
S.
,
Bair
,
R.
,
García
,
M.
,
Quan
,
S.
,
Richards
,
K. J.
,
Senecal
,
P. K.
,
Shethaji
,
T.
, and
Weber
,
M.
,
2013
, “
A Numerical Investigation on Scalability and Grid Convergence of Internal Combustion Engine Simulations
,”
SAE
Technical Paper No. 2013-01-1095.10.4271/2013-01-1095
22.
Pickett
,
L. M.
, “
Spray G' Operating Condition
,” Livermore, CA, accessed Apr. 2021, https://ecn.sandia.gov/gasoline-spray-combustion/target-condition/spray-g-operating-condition/
23.
Duke
,
D. J.
,
Finney
,
C. E. A.
,
Kastengren
,
A.
,
Matusik
,
K.
,
Sovis
,
N.
,
Santodonato
,
L.
,
Bilheux
,
H.
,
Schmidt
,
D.
,
Powell
,
C.
, and
Toops
,
T.
,
2017
, “
High-Resolution X-Ray and Neutron Computed Tomography of an Engine Combustion Network Spray G Gasoline Injector
,”
SAE Int. J. Fuels Lubricants
,
10
(
2
), pp.
328
343
.10.4271/2017-01-0824
24.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2021
,
Converge 3.0*
,
Convergent Science
,
Madison, WI
.
25.
Som
,
S.
,
Wang
,
Z.
,
Pei
,
Y.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2015
, “
Les of Vaporizing Gasoline Sprays Considering Multiinjection Averaging and Grid-Convergent Mesh Resolution
,”
ASME
Paper No. ICEF2015-1003.10.1115/ICEF2015-1003
26.
Reitz
,
R. D.
, and
Diwakar
,
R.
,
1987
, “
Structure of High-Pressure Fuel Sprays
,”
SAE
Technical Paper No. 870598.10.4271/870598
27.
Reitz
,
R.
,
1987
, “
Modeling Atomization Processes in High-Pressure Vaporizing Sprays
,”
Atom. Spray Technol.
,
3
, pp.
309
337
.https://uwmadison.app.box.com/v/AandS
28.
Patterson
,
M. A.
, and
Reitz
,
R. D.
,
1998
, “
Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission
,”
SAE
Technical Paper No. 980131.10.4271/980131
29.
Frossling
,
N.
,
1938
, “
Uber Die Verdunstung Fallender Tropfen
,”
Gerlands Beitr. Geophys.
,
52
(
1
), pp.
170
216
.
30.
Schmidt
,
D. P.
, and
Rutland
,
C. J.
,
2000
, “
A New Droplet Collision Algorithm
,”
J. Comput. Phys.
,
164
(
1
), pp.
62
80
.10.1006/jcph.2000.6568
31.
O'Rourke
,
P. J.
, and
Amsden
,
A. A.
,
1987
, “
The Tab Method for Numerical Calculation of Spray Droplet Breakup
,”
SAE
Technical Paper No. 872089.10.4271/872089
32.
Battistoni
,
M.
, and
Senecal
,
P. K.
,
2017
, “
Modeling of Internal and Near- Nozzle Flow for a Gasoline Direct Injection Fuel Injector
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052208
.10.1115/1.4032979
33.
Saha
,
K.
,
Som
,
S.
,
Battistoni
,
M.
,
Li
,
Y.
,
Pomraning
,
E.
, and
Senecal
,
P. K.
,
2016
, “
Numerical Investigation of Two-Phase Flow Evolution of In- and Near-Nozzle Regions of a Gasoline Direct Injection Engine During Needle Transients
,”
SAE Int. J. Engines
,
9
(
2
), pp.
1230
1240
.10.4271/2016-01-0870
34.
Battistoni
,
M.
,
Xue
,
Q.
,
Som
,
S.
, and
Pomraning
,
E.
,
2014
, “
Effect of Off-Axis Needle Motion on Internal Nozzle and Near Exit Flow in a Multi-Hole Diesel Injector
,”
SAE Int. J. Fuels Lubricants
,
7
(
1
), pp.
167
182
.10.4271/2014-01-1426
35.
Hwang
,
J.
,
Weiss
,
L.
,
Karathanassis
,
I. K.
,
Koukouvinis
,
P.
,
Pickett
,
L. M.
, and
Skeen
,
S. A.
,
2020
, “
Spatio-Temporal Identification of Plume Dynamics by 3D Computed Tomography Using Engine Combustion Network Spray G Injector and Various Fuels
,”
Fuel
,
280
, p.
118359
.10.1016/j.fuel.2020.118359
36.
Xue
,
Q.
,
Battistoni
,
M.
,
Powell
,
C. F.
,
Longman
,
D. E.
,
Quan
,
S. P.
,
Pomraning
,
E.
,
Senecal
,
P. K.
,
Schmidt
,
D. P.
, and
Som
,
S.
,
2015
, “
An Eulerian CFD Model and X-Ray Radiography for Coupled Nozzle Flow and Spray in Internal Combustion Engines
,”
Int. J. Multiphase Flow
,
70
, pp.
77
88
.10.1016/j.ijmultiphaseflow.2014.11.012
37.
Payri
,
R.
,
Gimeno
,
J.
,
Marti-Aldaravi
,
P.
, and
Vaquerizo
,
D.
,
2015
, “
Momentum Flux Measurements on an ECN GDi Injector
,”
SAE
Paper No. 2015-01-1893.10.4271/2015-01-1893
38.
Parrish
,
S. E.
,
2014
, “
Evaluation of Liquid and Vapor Penetration of Sprays From a Multi-Hole Gasoline Fuel Injector Operating Under Engine-Like Conditions
,”
SAE Int. J. Engines Vol.
,
7
(
2
), pp.
1017
1033
.10.4271/2014-01-1409
You do not currently have access to this content.