Abstract

Fossil fuels being the primary source of energy for industrial and power sectors are being consumed at an alarming rate. There is a dire need to search for alternative fuels and optimize the performance parameters of internal combustion (IC) engines. Traditional methods of testing and optimizing the performances of IC engine are complex, time-consuming, and expensive. This has led the researchers to shift their focus to faster and computationally feasible techniques like soft computing (SC) and machine learning (ML) algorithms, which predict the optimum performance with a substantial accuracy. This study focuses on the implementation of artificial neural network (ANN) and ensembling methods (random forest regression and extreme gradient boosting algorithm) modeling of a compression ignition (CI) diesel engine run on waste cooking oil (WCO). A single-cylinder, four-stroke, variable compression ratio diesel engine's performance, combustion, and emission parameters have been predicted using ANN and ML approaches. These models have been developed to predict the brake power, brake thermal efficiency, brake-specific fuel consumption, ignition delay, combustion duration, carbon monoxide, carbon dioxide, and oxides of nitrogen. All the models have been trained by tuning and optimizing a different number of hyper-parameters and training algorithms (Levenberg–Marquardt (LM), scaled conjugate gradient, and Broyden–Fletcher–Goldfarb–Shanno). Further the most optimum parameters have been selected using hyper-parameter optimization. The mathematical models are assessed for their generalization capability by subjecting them to a set of new testing data.

References

1.
Wilson
,
V.
, and
Udayakumar
,
H.
,
2012
, “
Optimization of Diesel Engine Parameters Using Taguchi Method and Design of Evolution
,”
J. Braz. Soc. Mech. Sci. Eng.
,
34
(
4
), pp.
423
428
.10.1590/S1678-58782012000400001
2.
Sarkar
,
A.
, and
Saha
,
U. K.
,
2019
, “
A Critique on the Research Activities and Potential Benefits of Dual-Fuel Diesel Engines Run on Biogas and Oxygenated Liquid Fuels
,”
ASME J. Eng. Gas Turbines Power
,
141
(
6
), p.
060801
.10.1115/1.4042168
3.
Bittle
,
J. A.
,
Younger
,
J. K.
, and
Jacobs
,
T. J.
,
2010
, “
Biodiesel Effects on Influencing Parameters of Brake Fuel Conversion Efficiency in a Medium Duty Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
122801
.10.1115/1.4001086
4.
Zhang
,
Q.
,
Xia
,
J.
,
Wang
,
J.
,
He
,
Z.
,
Zhao
,
W.
,
Qian
,
Y.
,
Zheng
,
L.
,
Liu
,
R.
, and
Lu
,
X.
,
2022
, “
Experimental Investigation on Spray Evaporation and Dispersion Characteristics of Impinged Biodiesel-Butanol Blends
,”
ASME J. Eng. Gas Turbines Power
,
144
(
7
), p.
071001
.10.1115/1.4054477
5.
Bora
,
B. J.
, and
Saha
,
U. K.
,
2015
, “
Improving the Performance of a Biogas Powered Dual Fuel Diesel Engine Using Emulsified Rice Bran Biodiesel as Pilot Fuel Through Adjustment of Compression Ratio and Injection Timing
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), p.
091505
.10.1115/1.4029708
6.
Sharma
,
P.
,
2022
, “
Prediction-Optimization of the Effects of Di-Tert Butyl Peroxide-Biodiesel Blends on Engine Performance and Emissions Using Multi-Objective Response Surface Methodology
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
072301
.10.1115/1.4052237
7.
Singh
,
P.
,
Chauhan
,
S. R.
,
Goel
,
V.
, and
Gupta
,
A. K.
,
2020
, “
Enhancing Diesel Engine Performance and Reducing Emissions Using Binary Biodiesel Fuel Blend
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012201
.10.1115/1.4044058
8.
Paul
,
A.
,
Bhowmik
,
S.
,
Panua
,
R.
, and
Debroy
,
D.
,
2018
, “
Artificial Neural Network-Based Prediction of Performances-Exhaust Emissions of Diesohol Piloted Dual Fuel Diesel Engine Under Varying Compressed Natural Gas Flowrates
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112201
.10.1115/1.4040380
9.
Ismail
,
H. M.
,
Ng
,
H. K.
,
Queck
,
C. W.
, and
Gan
,
S.
,
2012
, “
Artificial Neural Networks Modelling of Engine-Out Responses for a Light-Duty Diesel Engine Fuelled With Biodiesel Blends
,”
Appl. Energy
,
92
, pp.
769
777
.10.1016/j.apenergy.2011.08.027
10.
Sarkar
,
A.
, and
Saha
,
U. K.
,
2022
, “
Experimental Probe Into a Biogas Run Dual Fuel Diesel Engine Using Oxygenated Ternary Blends at the Optimum Equivalence Ratio and Under the Effect of Intake Charge Preheating
,”
ASME J. Eng. Gas Turbines Power
,
144
(
6
), p.
061010
.10.1115/1.4054058
11.
Srinivasa Pai
,
P.
,
Shrinivasa Rao
,
B. R.
, and,
Shivakumar
,
2011
, “
Artificial Neural Network Based Prediction of Performance and Emission Characteristics of a Variable Compression Ratio CI Engine Using WCO as a Biodiesel at Different Injection Timings
,”
Appl. Energy
,
88
(
7
), pp.
2344
2354
.10.1016/j.apenergy.2010.12.030
12.
Talebian-Kiakalaieh
,
A.
,
Amin
,
N. A. S.
, and
Mazaheri
,
H.
,
2013
, “
A Review on Novel Processes of Biodiesel Production From Waste Cooking Oil
,”
Appl. Energy
,
104
, pp.
683
710
.10.1016/j.apenergy.2012.11.061
13.
Murillo
,
S.
,
Míguez
,
J. L.
,
Porteiro
,
J.
,
Granada
,
E.
, and
Morán
,
J. C.
,
2007
, “
Performance and Exhaust Emissions in the Use of Biodiesel in Outboard Diesel Engines
,”
Fuel
,
86
(
12–13
), pp.
1765
1771
.10.1016/j.fuel.2006.11.031
14.
Usta
,
N.
,
Öztürk
,
E.
,
Can
,
Ö.
,
Conkur
,
E. S.
,
Nas
,
S.
,
Çon
,
A. H.
,
Can
,
A. Ç.
, and
Topcu
,
M.
,
2005
, “
Combustion of BioDiesel Fuel Produced From Hazelnut Soapstock/Waste Sunflower Oil Mixture in a Diesel Engine
,”
Energy Convers. Manag.
,
46
(
5
), pp.
741
755
.10.1016/j.enconman.2004.05.001
15.
Ulusoy
,
Y.
,
Arslan
,
R.
,
Tekin
,
Y.
,
Sürmen
,
A.
,
Bolat
,
A.
, and
Şahin
,
R.
,
2018
, “
Investigation of Performance and Emission Characteristics of Waste Cooking Oil as Biodiesel in a Diesel Engine
,”
Pet. Sci.
,
15
(
2
), pp.
396
404
.10.1007/s12182-018-0225-2
16.
Hwang
,
J.
,
Qi
,
D.
,
Jung
,
Y.
, and
Bae
,
C.
,
2014
, “
Effect of Injection Parameters on the Combustion and Emission Characteristics in a Common-Rail Direct Injection Diesel Engine Fueled With Waste Cooking Oil Biodiesel
,”
Renew. Energy
,
63
, pp.
9
17
.10.1016/j.renene.2013.08.051
17.
Kannan
,
G. R.
,
Balasubramanian
,
K. R.
, and
Anand
,
R.
,
2013
, “
Artificial Neural Network Approach to Study the Effect of Injection Pressure and Timing on Diesel Engine Performance Fueled With Biodiesel
,”
Int. J. Automot. Technol.
,
14
(
4
), pp.
507
519
.10.1007/s12239-013-0055-6
18.
Abed
,
K. A.
,
Gad
,
M. S.
,
El Morsi
,
A. K.
,
Sayed
,
M. M.
, and
Elyazeed
,
S. A.
,
2019
, “
Effect of Biodiesel Fuels on Diesel Engine Emissions
,”
Egypt. J. Pet.
,
28
(
2
), pp.
183
188
.10.1016/j.ejpe.2019.03.001
19.
Seeniappan
,
K.
,
Venkatesan
,
B.
,
Krishnan
,
N. N.
,
Kandhasamy
,
T.
,
Arunachalam
,
S.
,
Seeta
,
R. K.
, and
Depoures
,
M. V.
,
2022
, “
A Comparative Assessment of Performance and Emission Characteristics of a DI Diesel Engine Fuelled With Ternary Blends of Two Higher Alcohols With Lemongrass Oil Biodiesel and Diesel Fuel
,”
Energy Environ.
,
33
(
6
), pp.
1134
1159
.10.1177/0958305X211051323
20.
Nirmala
,
N.
,
Dawn
,
S. S.
, and
Harindra
,
C.
,
2020
, “
Analysis of Performance and Emission Characteristics of Waste Cooking Oil and Chlorella Variabilis MK039712.1 Biodiesel Blends in a Single Cylinder, Four Strokes Diesel Engine
,”
Renew. Energy
,
147
, pp.
284
292
.10.1016/j.renene.2019.08.133
21.
Taheri-Garavand
,
A.
,
Heidari-Maleni
,
A.
,
Mesri-Gundoshmian
,
T.
, and
Samuel
,
O. D.
,
2022
, “
Application of Artificial Neural Networks for the Prediction of Performance and Exhaust Emissions in IC Engine Using Biodiesel-Diesel Blends Containing Quantum Dot Based on Carbon Doped
,”
Energy Convers. Manag. X
,
16
, p.
100304
.10.1016/j.ecmx.2022.100304
22.
Ghobadian
,
B.
,
Rahimi
,
H.
,
Nikbakht
,
A. M.
,
Najafi
,
G.
, and
Yusaf
,
T. F.
,
2009
, “
Diesel Engine Performance and Exhaust Emission Analysis Using Waste Cooking Biodiesel Fuel With an Artificial Neural Network
,”
Renew. Energy
,
34
(
4
), pp.
976
982
.10.1016/j.renene.2008.08.008
23.
Najafi
,
G.
,
Ghobadian
,
B.
,
Yusaf
,
T. F.
, and
Rahimi
,
H.
,
2007
, “
Combustion Analysis of a CI Engine Performance Using Waste Cooking Biodiesel Fuel With an Artificial Neural Network Aid
,”
Am. J. Appl. Sci.
,
4
(
10
), pp.
759
767
.10.3844/ajassp.2007.759.767
24.
Bhatt
,
A. N.
, and
Shrivastava
,
N.
,
2022
, “
Experimental Investigation and Neural Network Modelling of Diesel Engine Using Hexanol Blended Ternary Waste Cooking Oil Biodiesel With Moderate Preheating
,”
Sustain. Energy Technol. Assess.
,
52
(
PC
), p.
102285
.10.1016/j.seta.2022.102285
25.
Ghanbari
,
M.
,
Najafi
,
G.
,
Ghobadian
,
B.
,
Mamat
,
R.
,
Noor
,
M. M.
, and
Moosavian
,
A.
,
2015
, “
Support Vector Machine to Predict Diesel Engine Performance and Emission Parameters Fueled With Nano-Particles Additive to Diesel Fuel
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
100
, p.
012069
.10.1088/1757-899X/100/1/012069
26.
Selvam
,
H. P.
,
Shekhar
,
S.
, and
Northrop
,
W. F.
,
2021
, “
Prediction of NOx Emissions From Compression Ignition Engines Using Ensemble Learning-Based Models With Physical Interpretability
,”
SAE
Paper No. 2021-24-0082.10.4271/2021-24-0082
27.
Raghuvaran
,
S.
,
Ashok
,
B.
,
Veluchamy
,
B.
, and
Ganesh
,
N.
,
2021
, “
Evaluation of Performance and Exhaust Emission of C.I Diesel Engine Fuel With Palm Oil Biodiesel Using an Artificial Neural Network
,”
Mater. Today Proc.
,
37
(
Part 2
), pp.
1107
1111
.10.1016/j.matpr.2020.06.344
28.
More
,
S. M.
,
Kakati
,
J.
,
Pal
,
S.
, and
Saha
,
U. K.
,
2022
, “
Implementation of Soft Computing Techniques in Predicting and Optimizing the Operating Parameters of Compression Ignition Diesel Engines: State-of-the-Art Review, Challenges and Future Outlook
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
5
), p.
050801
.10.1115/1.4053920
29.
Craney
,
T. A.
, and
Surles
,
J. G.
,
2002
, “
Model-Dependent Variance Inflation Factor Cutoff Values
,”
Qual. Eng.
,
14
(
3
), pp.
391
403
.10.1081/QEN-120001878
30.
MathWorks
,
2020
,
MATLAB, Version 2020a
,
MathWorks
,
Natick, MA
.
31.
Castresana
,
J.
,
Gabiña
,
G.
,
Martin
,
L.
, and
Uriondo
,
Z.
,
2021
, “
Comparative Performance and Emissions Assessments of a Single-Cylinder Diesel Engine Using Artificial Neural Network and Thermodynamic Simulation
,”
Appl. Therm. Eng.
,
185
, p.
116343
.10.1016/j.applthermaleng.2020.116343
32.
Hosamani
,
B. R.
,
Abbas Ali
,
S.
, and
Katti
,
V.
,
2021
, “
Assessment of Performance and Exhaust Emission Quality of Different Compression Ratio Engine Using Two Biodiesel Mixture: Artificial Neural Network Approach
,”
Alexandria Eng. J.
,
60
(
1
), pp.
837
844
.10.1016/j.aej.2020.10.012
33.
Taghavifar
,
H.
,
Khalilarya
,
S.
, and
Jafarmadar
,
S.
,
2014
, “
Diesel Engine Spray Characteristics Prediction With Hybridized Artificial Neural Network Optimized by Genetic Algorithm
,”
Energy
,
71
, pp.
656
664
.10.1016/j.energy.2014.05.006
34.
Cay
,
Y.
,
2013
, “
Prediction of a Gasoline Engine Performance With Artificial Neural Network
,”
Fuel
,
111
, pp.
324
331
.10.1016/j.fuel.2012.12.040
35.
Togun
,
N. K.
, and
Baysec
,
S.
,
2010
, “
Prediction of Torque and Specific Fuel Consumption of a Gasoline Engine by Using Artificial Neural Networks
,”
Appl. Energy
,
87
(
1
), pp.
349
355
.10.1016/j.apenergy.2009.08.016
36.
Sayin
,
C.
,
Ertunc
,
H. M.
,
Hosoz
,
M.
,
Kilicaslan
,
I.
, and
Canakci
,
M.
,
2007
, “
Performance and Exhaust Emissions of a Gasoline Engine Using Artificial Neural Network
,”
Appl. Therm. Eng.
,
27
(
1
), pp.
46
54
.10.1016/j.applthermaleng.2006.05.016
37.
Çay
,
Y.
,
Korkmaz
,
I.
,
Çiçek
,
A.
, and
Kara
,
F.
,
2013
, “
Prediction of Engine Performance and Exhaust Emissions for Gasoline and Methanol Using Artificial Neural Network
,”
Energy
,
50
, pp.
177
186
.10.1016/j.energy.2012.10.052
38.
Kiani
,
M. K. D.
,
Ghobadian
,
B.
,
Tavakoli
,
T.
,
Nikbakht
,
A. M.
, and
Najafi
,
G.
,
2010
, “
Application of Artificial Neural Networks for the Prediction of Performance and Exhaust Emissions in SI Engine Using Ethanol- Gasoline Blends
,”
Energy
,
35
(
1
), pp.
65
69
.10.1016/j.energy.2009.08.034
39.
Sakthivel
,
G.
,
Ilangkumaran
,
M.
, and
Nagarajan
,
G.
,
2013
, “
Predicting the Engine Performance Using Ethyl Ester of Fish Oil With the Aid of Artificial Neural Network
,”
Int. J. Ambient Energy
,
34
(
3
), pp.
145
158
.10.1080/01430750.2012.740429
40.
Yusaf
,
T. F.
,
Yousif
,
B. F.
, and
Elawad
,
M. M.
,
2011
, “
Crude Palm Oil Fuel for Diesel-Engines: Experimental and ANN Simulation Approaches
,”
Energy
,
36
(
8
), pp.
4871
4878
.10.1016/j.energy.2011.05.032
41.
Kapusuz
,
M.
,
Ozcan
,
H.
, and
Yamin
,
J. A.
,
2015
, “
Research of Performance on a Spark Ignition Engine Fueled by Alcohol e Gasoline Blends Using Artificial Neural Networks
,”
Appl. Therm. Eng.
,
91
, pp.
525
534
.10.1016/j.applthermaleng.2015.08.058
42.
Roy
,
S.
,
Banerjee
,
R.
, and
Bose
,
P. K.
,
2014
, “
Performance and Exhaust Emissions Prediction of a CRDI Assisted Single Cylinder Diesel Engine Coupled With EGR Using Artificial Neural Network
,”
Appl. Energy
,
119
, pp.
330
340
.10.1016/j.apenergy.2014.01.044
43.
Enweremadu
,
C. C.
, and
Rutto
,
H. L.
,
2010
, “
Combustion, Emission and Engine Performance Characteristics of Used Cooking Oil Biodiesel - A Review
,”
Renew. Sustain. Energy Rev.
,
14
(
9
), pp.
2863
2873
.10.1016/j.rser.2010.07.036
44.
Çetinkaya
,
M.
, and
Karaosmanočlu
,
F.
,
2005
, “
A New Application Area for Used Cooking Oil Originated Biodiesel: Generators
,”
Energy Fuels
,
19
(
2
), pp.
645
652
.10.1021/ef049890k
45.
Abed
,
K. A.
,
El Morsi
,
A. K.
,
Sayed
,
M. M.
,
Shaib
,
A. A. E.
, and
Gad
,
M. S.
,
2018
, “
Effect of Waste Cooking-Oil Biodiesel on Performance and Exhaust Emissions of a Diesel Engine
,”
Egypt. J. Pet.
,
27
(
4
), pp.
985
989
.10.1016/j.ejpe.2018.02.008
46.
Yamin
,
J. A. A.
,
Gupta
,
H. N.
, and
Bansal
,
B. B.
,
2003
, “
The Effect of Combustion Duration on the Performance and Emission Characteristics of Propane-Fueled 4-Stroke S. I. Engines
,”
Emirates J. Eng. Res.
,
8
(
1
), pp.
1
14
.https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f31f3253c757c2fe3f7d1ca0851a2a6719c5780d
47.
Canakci
,
M.
,
2008
, “
An Experimental Study for the Effects of Boost Pressure on the Performance and Exhaust Emissions of a DI-HCCI Gasoline Engine
,”
Fuel
,
87
(
8–9
), pp.
1503
1514
.10.1016/j.fuel.2007.08.002
48.
Ramalingam
,
K.
,
Kandasamy
,
A.
,
Balasubramanian
,
D.
,
Palani
,
M.
,
Subramanian
,
T.
,
Varuvel
,
E. G.
, and
Viswanathan
,
K.
,
2020
, “
Forcasting of an ANN Model for Predicting Behaviour of Diesel Engine Energised by a Combination of Two Low Viscous Biofuels
,”
Environ. Sci. Pollut. Res.
,
27
(
20
), pp.
24702
24722
.10.1007/s11356-019-06222-7
49.
Golcu
,
M.
,
Sekmen
,
Y.
,
Erduranli
,
P.
, and
Salman
,
M. S.
,
2005
, “
Artificial Neural-Network Based Modeling of Variable Valve-Timing in a Spark-Ignition Engine
,”
Appl. Energy
,
81
(
2
), pp.
187
197
.10.1016/j.apenergy.2004.07.008
50.
Rahimi-Ajdadi
,
F.
, and
Abbaspour-Gilandeh
,
Y.
,
2011
, “
Artificial Neural Network and Stepwise Multiple Range Regression Methods for Prediction of Tractor Fuel Consumption
,”
Measurement
,
44
(
10
), pp.
2104
2111
.10.1016/j.measurement.2011.08.006
51.
Roy
,
S.
,
Das
,
A. K.
,
Bose
,
P. K.
, and
Banerjee
,
R.
,
2014
, “
ANN Metamodel Assisted Particle Swarm Optimization of the Performance-Emission Trade-Off Characteristics of a Single Cylinder CRDI Engine Under CNG Dual-Fuel Operation
,”
J. Nat. Gas Sci. Eng.
,
21
, pp.
1156
1162
.10.1016/j.jngse.2014.11.013
You do not currently have access to this content.