Abstract

Modern internal combustion engines (ICE) operate at the ragged edge of stable operation characterized by high cycle-to-cycle variations (CCV). A key scientific challenge for ICE is the understanding, modeling, and control of CCV in engine performance, which can contribute to partial burns, misfire, and knock. The objective of this study is to use high-fidelity numerical simulations to improve the understanding of the causes of CCV. Nek5000, a leading high-order spectral element, open source code, is used to simulate the turbulent flow in the engine combustion chamber. Multicycle, wall-resolved large-eddy simulations (LESs) are performed for the General Motors (GM), Transparent Combustion Chamber (TCC-III) optical engine under motored operating conditions. The mean and root-mean-square (rms) of the in-cylinder flow fields at various piston positions are validated using particle image velocimetry (PIV) measurements during the intake and compression strokes. The large-scale flow structures, including the swirl and tumble flow patterns, are analyzed in detail and the causes for cyclic variabilities in these flow features are explained. The energy distribution across the different scales of the flow are quantified using one-dimensional (1D) energy spectra, and the effect of the tumble breakdown process on the energy distribution is examined. The insights from this study can help us develop improved engine designs with reduced cyclic variabilities in the in-cylinder flow leading to enhanced engine performance.

References

1.
U.S. Energy Information Administration (EIA)
,
2016
, “International Energy Outlook,”
EIA
, Washington, DC, accessed Oct. 6, 2021, https://www.eia.gov/outlooks/ieo/pdf/0484(2016).pdf
2.
Urushihara
,
T.
,
Yamaguchi
,
K.
,
Yoshizawa
,
K.
, and
Itoh
,
T.
,
2005
, “
A Study of a Gasoline-Fueled Compression Ignition Engine ∼ Expansion of HCCI Operation Range Using SI Combustion as a Trigger of Compression Ignition
,”
SAE
Paper No. 2005-01-0180.10.4271/2005-01-0180
3.
Sjöberg
,
M.
, and
Zeng
,
W.
,
2016
, “
Combined Effects of Fuel and Dilution Type on Efficiency Gains of Lean Well-Mixed DISI Engine Operation With Enhanced Ignition and Intake Heating for Enabling Mixed-Mode Combustion
,”
SAE Int. J. Engines
,
9
(
2
), pp.
750
767
.10.4271/2016-01-0689
4.
Reuss
,
D. L.
,
2000
, “
Cyclic Variability of Large-Scale Turbulent Structures in Directed and Undirected IC Engine Flows
,”
SAE
Paper No. 2000-01-0246.10.4271/2000-01-0246
5.
Funk
,
C.
,
Sick
,
V.
,
Reuss
,
D. L.
, and
Dahm
,
W. J. A.
,
2002
, “
Turbulence Properties of High and Low Swirl in-Cylinder Flows
,”
SAE
Paper No. 2002-01-2841.10.4271/2002-01-2841
6.
Towers
,
D. P.
, and
Towers
,
C. E.
,
2004
, “
Cyclic Variability Measurements of In-Cylinder Engine Flows Using High-Speed Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
15
(
9
), pp.
1917
1925
.10.1088/0957-0233/15/9/032
7.
Cosadia
,
I.
,
Borée
,
J.
, and
Dumont
,
P.
,
2007
, “
Coupling Time-Resolved PIV Flow-Fields and Phase-Invariant Proper Orthogonal Decomposition for the Description of the Parameters Space in a Transparent Diesel Engine
,”
Exp. Fluids
,
43
(
2–3
), pp.
357
370
.10.1007/s00348-007-0338-7
8.
Müller
,
S.
,
Böhm
,
B.
,
Gleißner
,
M.
,
Grzeszik
,
R.
,
Arndt
,
S.
, and
Dreizler
,
A.
,
2010
, “
Flow Field Measurements in an Optically Accessible, Direct-Injection Spray-Guided Internal Combustion Engine Using High-Speed PIV
,”
Exp. Fluids
,
48
(
2
), pp.
281
290
.10.1007/s00348-009-0742-2
9.
Baum
,
E.
,
Peterson
,
B.
,
Surmann
,
C.
,
Michaelis
,
D.
,
Böhm
,
B.
, and
Dreizler
,
A.
,
2013
, “
Investigation of the 3D Flow Field in an IC Engine Using Tomographic PIV
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
2903
2910
.10.1016/j.proci.2012.06.123
10.
Buhl
,
S.
,
Hartmann
,
F.
, and
Hasse
,
C.
,
2016
, “
Identification of Large-Scale Structure Fluctuations in IC Engines Using Pod-Based Conditional Averaging
,”
Oil Gas Sci. Technol.–Rev. IFP Energ. Nouv.
,
71
(
1
), p.
1
.10.2516/ogst/2015021
11.
Hartmann
,
F.
,
Buhl
,
S.
,
Gleiss
,
F.
,
Barth
,
P.
,
Schild
,
M.
,
Kaiser
,
S. A.
, and
Hasse
,
C.
,
2016
, “
Spatially Resolved Experimental and Numerical Investigation of the Flow Through the Intake Port of an Internal Combustion Engine
,”
Oil Gas Sci. Technol.–Rev. IFP Energ. Nouv.
,
71
(
1
), p.
2
.10.2516/ogst/2015022
12.
Ameen
,
M. M.
,
Yang
,
X.
,
Kuo
,
T.-W.
, and
Som
,
S.
,
2017
, “
Parallel Methodology to Capture Cyclic Variability in Motored Engines
,”
Int. J. Engine Res.
,
18
(
4
), pp.
366
377
.10.1177/1468087416662544
13.
Ameen
,
M. M.
,
Yang
,
X.
,
Kuo
,
T.-W.
, and
Som
,
S.
,
2017
, “
Using LES to Simulate Cycle-to-Cycle Variability During the Gas Exchange Process
,”
ASME
Paper No. ICEF2017-3591. 10.1115/ICEF2017-3591
14.
Messina
,
P.
,
2017
, “
The Exascale Computing Project
,”
Comput. Sci. Eng.
,
19
(
3
), pp.
63
67
.10.1109/MCSE.2017.57
15.
Schiffmann
,
P.
,
Sick
,
V.
, and
Reuss
,
D.
,
2018
, “
TCC-III Motored Full View
,”
University of Michigan-Deep Blue Data
, Ann Arbor, MI.10.7302/Z2MS3QP3
16.
Patera
,
A. T.
,
1984
, “
A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion
,”
J. Comput. Phys.
,
54
(
3
), pp.
468
488
.10.1016/0021-9991(84)90128-1
17.
Deville
,
M. O.
,
Fischer
,
P. F.
, and
Mund
,
E. H.
,
2002
,
High-Order Methods for Incompressible Fluid Flow
, Vol.
9
,
Cambridge University Press
, Cambridge, UK.
18.
Tufo
,
H. M.
, and
Fischer
,
P. F.
,
2001
, “
Fast Parallel Direct Solvers for Coarse Grid Problems
,”
J. Parallel Distrib. Comput.
,
61
(
2
), pp.
151
177
.10.1006/jpdc.2000.1676
19.
Tomboulides
,
A. G.
,
Lee
,
J. C. Y.
, and
Orszag
,
S. A.
,
1997
, “
Numerical Simulation of Low Mach Number Reactive Flows
,”
J. Sci. Comput.
,
12
(
2
), pp.
139
167
.10.1023/A:1025669715376
20.
Fischer
,
P.
,
Schmitt
,
M.
, and
Tomboulides
,
A.
,
2017
, “
Recent Developments in Spectral Element Simulations of Moving-Domain Problems
,”
Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science
,
Springer
, New York, pp.
213
244
.
21.
Ho
,
L.-W.
,
1989
, “
A Legendre Spectral Element Method for Simulation of Incompressible Unsteady Viscous Free-Surface Flows
,”
Ph.D. thesis
,
Massachusetts Institute of Technology
, Cambridge, MA.http://hdl.handle.net/1721.1/14293
22.
Ho
,
L.-W.
, and
Patera
,
A. T.
,
1990
, “
A Legendre Spectral Element Method for Simulation of Unsteady Incompressible Viscous Free-Surface Flows
,”
Comput. Methods Appl. Mech. Eng.
,
80
(
1–3
), pp.
355
366
.10.1016/0045-7825(90)90040-S
23.
Ho
,
L.-W.
,
Maday
,
Y.
,
Patera
,
A. T.
, and
Rønquist
,
E. M.
,
1990
, “
A High-Order Lagrangian-Decoupling Method for the Incompressible Navier–Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
80
(
1–3
), pp.
65
90
.10.1016/0045-7825(90)90015-E
24.
Maday
,
Y.
,
Patera
,
A. T.
, and
Rønquist
,
E. M.
,
1990
, “
An Operator-Integration-Factor Splitting Method for Time-Dependent Problems: Application to Incompressible Fluid Flow
,”
J. Sci. Comput.
,
5
(
4
), pp.
263
292
.10.1007/BF01063118
25.
Patel
,
S.
,
Fischer
,
P.
,
Min
,
M.
, and
Tomboulides
,
A.
,
2019
, “
A Characteristic-Based Spectral Element Method for Moving-Domain Problems
,”
J. Sci. Comput.
,
79
(
1
), pp.
564
592
.10.1007/s10915-018-0876-6
26.
Schiffmann
,
P.
,
Gupta
,
S.
,
Reuss
,
D.
,
Sick
,
V.
,
Yang
,
X.
, and
Kuo
,
T.-W.
,
2016
, “
TCC-III Engine Benchmark for Large-Eddy Simulation of IC Engine Flows
,”
Oil Gas Sci. Technol.—Rev. IFP Energ. Nouv.
,
71
(
1
), p.
3
.10.2516/ogst/2015028
27.
Yang
,
X.
,
Gupta
,
S.
,
Kuo
,
T.
, and
Gopalakrishnan
,
V.
,
2014
, “
Rans and Large Eddy Simulation of Internal Combustion Engine Flows—A Comparative Study
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
051507
.10.1115/1.4026165
28.
Ameen
,
M. M.
,
Yang
,
X.
,
Kuo
,
T.-W.
,
Xue
,
Q.
, and
Som
,
S.
,
2015
, “
LES for Simulating the Gas Exchange Process in a Spark Ignition Engine
,”
ASME
Paper No. ICEF2015-1002. 10.1115/ICEF2015-1002
29.
Kuo
,
T.-W.
,
Yang
,
X.
,
Gopalakrishnan
,
V.
, and
Chen
,
Z.
,
2014
, “
Large Eddy Simulation (LES) for IC Engine Flows
,”
Oil Gas Sci. Technol.—Rev. IFP Energ. Nouv.
,
69
(
1
), pp.
61
81
.10.2516/ogst/2013127
30.
Hindmarsh
,
A. C.
,
Brown
,
P. N.
,
Grant
,
K. E.
,
Lee
,
S. L.
,
Serban
,
R.
,
Shumaker
,
D. E.
, and
Woodward
,
C. S.
,
2005
, “
SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers
,”
ACM Trans. Math. Software
,
31
(
3
), pp.
363
396
.10.1145/1089014.1089020
31.
Borée
,
J.
, and
Miles
,
P. C.
,
2014
, “
In-Cylinder Flow
,”
Encyclopedia Automotive Engineering
, Wiley, Hoboken, NJ, pp.
1
31
.
32.
Roudnitzky
,
S.
,
Druault
,
P.
, and
Guibert
,
P.
,
2006
, “
Proper Orthogonal Decomposition of In-Cylinder Engine Flow Into Mean Component, Coherent Structures and Random Gaussian Fluctuations
,”
J. Turbul.
,
7
, p.
N70
.10.1080/14685240600806264
33.
Zhuang
,
H.
, and
Hung
,
D. L. S.
,
2016
, “
Characterization of the Effect of Intake Air Swirl Motion on Time-Resolved in-Cylinder Flow Field Using Quadruple Proper Orthogonal Decomposition
,”
Energy Convers. Manage.
,
108
, pp.
366
376
.10.1016/j.enconman.2015.10.080
34.
Shen
,
L.
,
Teh
,
K.-Y.
,
Ge
,
P.
,
Zhao
,
F.
, and
Hung
,
D. L. S.
,
2021
, “
Temporal Evolution Analysis of In-Cylinder Flow by Means of Proper Orthogonal Decomposition
,”
Int. J. Engine Res.
,
22
(
5
), pp.
1714
1730
.10.1177/1468087420917246
You do not currently have access to this content.