Abstract

The integration of a heat pump (HP) with a combined cycle gas turbine (CCGT) to control the inlet air temperature is a promising technology to meet the requirements imposed by the current electricity systems in terms of efficiency and flexibility. If the HP is coupled with a thermal energy storage (TES) in an inlet conditioning unit (ICU), it can be exploited in different modes to enhance the off-design CCGT's efficiency or to boost the power output at full load. Furthermore, fuel-saving would be reflected in avoided emissions. The optimal sizing of the ICU, as well as an accurate estimation of the benefits, is a complex problem influenced by several factors such as the local climate and electricity market prices. This paper aims to systematically investigate, utilizing a mixed integer linear programming (MILP) model for optimal dispatch, the feasibility of an ICU integration in different scenarios (EU and US). Different electricity markets have been analyzed and classified according to the parameters describing the average and variability of prices, the interdependency with the gas market, the ambient temperature, or the local carbon pricing policy. The most favorable conditions are identified and the dependency of the optimal ICU sizing on the climate and the electricity market is highlighted. This paper provides information for a first viability assessment: the concept appears to be highly profitable in hot regions with high price variability. Additionally, even in less profitable conditions (i.e., stable low prices in a cold climate), the system increases operating hours and reduces economic losses.

References

1.
IEA
,
2019
, “
The Role of Gas in Today's Energy Transition
,” World Energy Outlook Special Report, Paris, Report.https://www.iea.org/reports/the-role-of-gas-in-todaysenergy-transitions
2.
Abudu
,
K.
,
Igie
,
U.
,
Roumeliotis
,
I.
, and
Hamilton
,
R.
,
2021
, “
Impact of Gas Turbine Flexibility Improvements on Combined Cycle Gas Turbine Performance
,”
Appl. Therm. Eng.
,
189
, p.
116703
.10.1016/j.applthermaleng.2021.116703
3.
Kim
,
M. J.
, and
Kim
,
T. S.
,
2019
, “
Integration of Compressed Air Energy Storage and Gas Turbine to Improve the Ramp Rate
,”
Appl. Energy
,
247
, pp.
363
373
.10.1016/j.apenergy.2019.04.046
4.
Bhargava
,
R. K.
,
Meher-Homji
,
C. B.
,
Chaker
,
M. A.
,
Bianchi
,
M.
,
Melino
,
F.
,
Peretto
,
A.
, and
Ingistov
,
S.
,
2007
, “
Gas Turbine Fogging Technology: A State-of-the-Art Review—Part I: Inlet Evaporative Fogging—Analytical and Experimental Aspects
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
443
453
.10.1115/1.2364003
5.
Al-Ibrahim
,
A. M.
, and
Varnham
,
A.
,
2010
, “
A Review of Inlet Air-Cooling Technologies for Enhancing the Performance of Combustion Turbines in Saudi Arabia
,”
Appl. Therm. Eng.
,
30
(
14–15
), pp.
1879
1888
.10.1016/j.applthermaleng.2010.04.025
6.
Radchenko
,
A.
,
Bohdal
,
L.
,
Zongming
,
Y.
,
Portnoi
,
B.
, and
Tkachenko
,
V.
,
2020
, “
Rational Designing of Gas Turbine Inlet Air Cooling System
,”
Advanced Manufacturing Processes
,
V.
Tonkonogyi
,
V.
Ivanov
,
J.
Trojanowska
,
G.
Oborskyi
,
M.
Edl
,
I.
Kuric
,
I.
Pavlenko
, and
P.
Dasic
, eds.,
Springer International Publishing
,
Cham
, pp.
591
599
.
7.
Gkoutzamanis
,
V.
,
Chatziangelidou
,
A.
,
Efstathiadis
,
T.
,
Kalfas
,
A.
,
Traverso
,
A.
, and
Chiu
,
J.
,
2019
, “
Thermal Energy Storage For Gas Turbine Power Augmentation
,”
J. Global Power Propul. Soc.
,
3
, pp.
592
608
.10.33737/jgpps/110254
8.
Variny
,
M.
, and
Mierka
,
O.
,
2009
, “
Improvement of Part Load Efficiency of a Combined Cycle Power Plant Provisioning Ancillary Services
,”
Appl. Energy
,
86
(
6
), pp.
888
894
.10.1016/j.apenergy.2008.11.004
9.
Liu
,
Z.
,
Ren
,
X.
,
Yan
,
Z.
,
Zhu
,
H.
,
Zhang
,
T.
,
Zhu
,
W.
, and
Li
,
X.
,
2019
, “
Effect of Inlet Air Heating on Gas Turbine Efficiency Under Partial Load
,”
Energies
,
12
(
17
), p.
3327
.10.3390/en12173327
10.
Guédez
,
R.
,
García
,
J.
,
Nuutinen
,
A.
,
Graziano
,
G.
,
Chiu
,
J.
,
Sorce
,
A.
,
Piantelli
,
L.
,
Traverso
,
A.
, and
Laumert
,
B.
,
2019
, “
Techno-Economic Comparative Analysis of Innovative Combined Cycle Power Plant Layouts Integrated With Heat Pumps and Thermal Energy Storage
,”
ASME
Paper No. GT2019-91036.10.1115/GT2019-91036
11.
Sorce
,
A.
,
Giugno
,
A.
,
Marino
,
D.
,
Piola
,
S.
, and
Guedez
,
R.
,
2019
, “
Analysis of a Combined Cycle Exploiting Inlet Conditioning Technologies for Power Modulation
,”
ASME
Paper No. GT2019-91541. 10.1115/GT2019-91541
12.
Mantilla
,
W.
,
Garcia
,
J.
,
Guédez
,
R.
, and
Sorce
,
A.
,
2020
, “
Short-Term Optimization of a Combined Cycle Power Plant Integrated With an Inlet Air Conditioning Unit
,”
ASME
Paper No. GT2020-15162.10.1115/GT2020-15162
13.
Giugno
,
A.
,
Sorce
,
A.
,
Cuneo
,
A.
, and
Barberis
,
S.
,
2021
, “
Effects of Market and Climatic Conditions Over a Gas Turbine Combined Cycle Integrated With a Heat Pump for Inlet Cooling
,”
Appl. Energy
,
290
, p.
116724
.10.1016/j.apenergy.2021.116724
14.
Vannoni
,
A.
,
Garcia
,
J. A.
,
Guedez
,
R.
, and
Sorce
,
A.
,
2021
, “
Ancillary Service Potential for Flexible Combined Cycles
,”
ASME
Paper No. GT2021-59587. 10.1115/GT2021-59587
15.
Istituto Superiore per la Protezione e la Ricerca Ambientale
,
2020
, Tabella Dei Parametri Standard Nazionali Applicabili per Il Calcolo Delle Emissioni per Il Periodo 1 Gennaio – 31 Dicembre 2019, Rome, Italy.
16.
Hermans
,
M.
,
Bruninx
,
K.
, and
Delarue
,
E.
,
2018
, “
Impact of CCGT Start-Up Flexibility and Cycling Costs Toward Renewables Integration
,”
IEEE Trans. Sustainable Energy
,
9
(
3
), pp.
1468
1476
.10.1109/TSTE.2018.2791679
17.
Ricerca sul Sistema Elettrico—RSE SpA,
2016
,
Energia Elettrica, Anatomia Dei Costi.
, Milan, Italy.
18.
Giugno
,
A.
, Cuneo, A.,
Piantelli
,
L.
, and
Sorce
,
A.
,
2018
, “
Integration of Heat Pump and Gas Turbine Combined Cycle: Layout and Market Opportunity
,”
Ninth International Gas Turbine Conference
,
Brussels, Belgium
, Oct. 10–11, Paper No. 54-IGTC18.
19.
Vannoni
,
A.
,
Sorce
,
A.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2021
, “
Techno-Economic Analysis of Power-to-Heat Systems
,”
E3S Web Conf.
,
238
, p.
03003
.10.1051/e3sconf/202123803003
20.
ENTSO-E Transparency Platform
,
2021
, “
Day-Ahead Prices
,” accessed Nov. 30, 2021, https://transparency.entsoe.eu/transmission-domain/r2/dayAheadPrices/show
21.
LCG Consulting
,
2021
, “
Energy Online Data
,” accessed Nov. 30, 2021, http://www.energyonline.com/Data
22.
Copernicus Climate Change Service (C3S)
,
2017
, “
ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate
,” accessed Jan. 27, 2021, https://cds.climate.copernicus.eu/cdsapp#!/home
23.
World Bank, Ecofys, Vivid Economics
,
2017
, “
State and Trends of Carbon Pricing 2017–2020
,” World Bank, Washington, DC, accessed Oct. 25, 2022, https://openknowledge.worldbank.org/handle/10986/28510
You do not currently have access to this content.