Abstract

This study investigates the effect of imposing symmetric transverse acoustic excitation and counter-rotating air swirl flow on a confined hollow cone spray sheet. We study the impact of these forcing conditions on two unstable modes—sheet flapping and sinuous wave growth modes—and their phasic relationship. We used the shadowgraphy technique, and only the sheet edges were analyzed using the method of snapshot proper orthogonal decomposition (POD). In this study, we used postprocessing techniques to estimate the nondimensional breakup length, phase averaged cone angle, and continuous wavelet transform (CWT) frequency. Results show that imposing acoustic excitation alone causes the sheet edges to flap, axisymmetrically, at the pressure antinode, while at the pressure node and base flow condition, the asymmetric sinuous wave mode is dominant. At the pressure intermediary, we find the possible dominance of both modes. While the dominant effect of air swirl alone was difficult to ascertain, results from CWT analysis show that POD mode 1 and mode 3 have very similar spectral content, with mode 3 showing a flapping mode. Finally, air swirl flow has a more dominant effect than acoustics in causing sheet breakup.

References

1.
Rayleigh
,
W. S. B.
, 1894,
The Theory of Sound
,
MacMillan and Co.
,
London, UK
.
2.
O'Connor
,
J.
,
Acharya
,
V.
, and
Lieuwen
,
T.
,
2015
, “
Transverse Combustion Instabilities—Acoustics, Fluid Mechanics, and Flame Processes
,”
Prog. Energy Combust. Sci.
,
49
, pp.
1
39
.10.1016/j.pecs.2015.01.001
3.
Chakravarthy
,
S. R.
,
Sampath
,
R.
, and
Ramanan
,
V.
,
2017
, “
Dynamics and Diagnostics of Flame-Acoustic
,”
Combust. Sci. Technol.
,
189
(
3
), pp.
395
437
.10.1080/00102202.2016.1202938
4.
Lefebvre
,
A. H.
, and
McDonell
,
V. G.
,
1989
,
Atomization and Sprays
,
CRC Press
, New York.
5.
Lin
,
S. P.
,
2003
,
Breakup of Liquid Sheets and Jets
,
Cambridge University Press
, Cambridge, UK.
6.
Lightfoot
,
M. D. A.
,
2009
, “
Fundamental Classification of Atomization Processes
,”
Atomization Sprays
,
19
(
11
), pp.
1065
1104
.10.1615/AtomizSpr.v19.i11.50
7.
Clanet
,
C.
, and
Villermaux
,
E.
,
2002
, “
Life of a Smooth Liquid Sheet
,”
J. Fluid Mech.
,
462
, pp.
307
340
.10.1017/S0022112002008339
8.
Villermaux
,
E.
, and
Clanet
,
C.
,
2002
, “
Life of a Flapping Liquid Sheet
,”
J. Fluid Mech.
,
462
, pp.
341
363
.10.1017/S0022112002008376
9.
Saurabh
,
A.
, and
Paschereit
,
C. O.
,
2013
, “
Combustion Instability in a Swirl Flow Combustor With Transverse Extensions
,”
ASME
Paper No. GT2013-95732.10.1115/GT2013-95732
10.
Ibrahim
,
A. A.
, and
Jog
,
M. A.
,
2006
, “
Effect of Liquid and Air Swirl Strength and Relative Rotational Direction on the Instability of an Annular Liquid Sheet
,”
Acta Mech.
,
186
(
1–4
), pp.
113
133
.10.1007/s00707-006-0368-x
11.
Panchagnula
,
M. V.
,
Sojka
,
P. E.
, and
Santangelo
,
P. J.
,
1996
, “
On the 3D Instability of a Swirling, Annular, Inviscid Liquid Sheet Subject to Unequal Gas Velocities
,”
Phys. Fluids
,
8
(
12
), pp.
3300
3312
.10.1063/1.869119
12.
Saha
,
A.
,
Lee
,
J. D.
,
Basu
,
S.
, and
Kumar
,
R.
,
2012
, “
Breakup and Coalescence Characteristics of a Hollow Cone Swirling Spray
,”
Phys. Fluids.
,
24
(
12
), p.
124103
.10.1063/1.4773065
13.
Babu
,
A. I.
, and
Chakravarthy
,
S. R.
,
2017
, “
Effect of Azimuthal Velocity Fluctuation on Hollow Cone Spray
,”
ASME
Paper No. GT2017-65112.10.1115/GT2017-65112
14.
Musemic
,
E.
,
Gaspar
,
M.
,
Weichert
,
F.
,
Müller
,
H.
, and
Walzel
,
P.
,
2010
, “
Experimental Examination of the Liquid Sheet Disintegration Process Using Combined Photography and Fiber Based Measuring Techniques
,”
ILASS – Europe 2010, 23rd Annual Conference on Liquid Atomization and Spray Systems
, Brno, Czech Republic, Sept. 21.https://www.ilasseurope.org/ICLASS/ilass2010/FILES/FULL_PAPERS/088.pdf
15.
Lee
,
J. D.
,
2013
, “
Experimental Investigation of Breakup and Coalescence Characteristics of a Hollow Cone Swirling Spray
,”
Ph.D. thesis
, University of Central Florida, Orlando, FL.https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=3869&context=etd
16.
Das
,
M.
,
Chatterjee
,
S.
,
Mukhopadhyay
,
A.
, and
Sen
,
S.
,
2014
, “
Experimental Investigation of a Hollow Cone Spray Using Laser Diagnostics
,”
ASME J. Eng. Gas Turbines Power.
,
136
(
7
), p.
071504
.10.1115/1.4026549
17.
Ding
,
J.
,
Li
,
G.
,
Yu
,
Y.
, and
Li
,
H.
,
2016
, “
Numerical Investigation on Primary Atomization Mechanism of Hollow Cone Swirling Sprays
,”
Int. J. Rotating Mach.
,
2016
, p.
1201497
.10.1155/2016/1201497
18.
Lieuwen
,
T.
,
Yang
,
V.
, and
Lu
,
F.
, 2005,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms and Modeling
,
American Institute of Aeronautics and Astronautics
, Reston, VA.
19.
Dighe
,
S.
, and
Gadgil
,
H.
,
2018
, “
Dynamics of Liquid Sheet Breakup in the Presence of Acoustic Excitation
,”
Int. J. Multiphase Flow
,
99
, pp.
347
362
.10.1016/j.ijmultiphaseflow.2017.11.004
20.
Mulmule
,
A. S.
,
Tirumkudulu
,
M. S.
, and
Ramamurthi
,
K.
,
2010
, “
Instability of a Moving Liquid Sheet in the Presence of Acoustic Forcing
,”
Phys. Fluids
,
22
(
2
), p.
022101
.10.1063/1.3290745
21.
Prieur
,
K.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2018
, “
Strong Azimuthal Combustion Instabilities in a Spray Annular Chamber With Intermittent Partial Blow-Off
,”
ASME J. Eng. Gas Turbines Power.
,
140
(
3
), p.
031503
.10.1115/1.4037824
22.
Bhattacharjee
,
R.
,
Babu
,
A. I.
, and
Chakravarthy
,
S. R.
,
2019
, “
Symmetric Transverse Acoustic Excitation of a Hollow Cone Spray Sheet With Air Swirl
,”
ASME
Paper No. GTINDIA2019-2580.10.1115/GTINDIA2019-2580
23.
Shanmugadas
,
K. P.
, and
Chakravarthy
,
S. R.
,
2017
, “
A Canonical Geometry to Study Wall Filming and Atomization in Pre-Filming Coaxial Swirl Injectors
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2467
2474
.10.1016/j.proci.2016.08.082
24.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures, Parts I - III
,”
Quarterly Appl. Math.
,
45
(
3
), pp.
561
571
.10.1090/qam/910462
25.
Taira
,
K.
,
Brunton
,
S. L.
,
Dawson
,
S. T.
,
Rowley
,
C. W.
,
Colonius
,
T.
,
McKeon
,
B. J.
, and
Ukeiley
,
L. S.
,
2017
, “
Modal Analysis of Fluid Flows: An Overview
,”
AIAA
,
55
(
12
), pp.
4013
4041
.10.2514/1.J056060
You do not currently have access to this content.