Abstract

The boundary layer ingestion (BLI) concept has emerged as a novel technology for reducing aircraft fuel consumption. Several studies designed BLI-fans for aircraft. BLI-propellers, although, have still received little attention, and the choice of open-rotors or ducted propellers is still an open question regarding the best performance. The blade design is also challenging because the BLI-propulsors ingest a nonuniform flow. These aspects emphasize further investigation of unducted and ducted BLI-propulsors and the use of optimization frameworks, coupled with computational fluid dynamics simulations, to design the propeller to adapt to the incoming flow. This paper uses a multi-objective NSGA-II optimization framework, coupled with three-dimensional RANS simulations and radial basis function (RBF) metamodeling, used for the design and optimization of three propeller configurations at cruise conditions: (a) conventional propeller operating in the freestream, (b) unducted BLI-propeller, and (c) ducted BLI-propeller, both ingesting the airframe boundary layer. The optimization results showed a significant increase in chord and a decrease in the blade angles in the BLI configurations, emphasizing that these geometric parameters optimization highly affects the BLI-blade design. The unducted BLI-propeller needs approximately 40% less shaft power than the conventional propeller to generate the same amount of propeller force. The ducted BLI-propeller needs even less power, 47%. The duct contributes to the tip vortex weakening, recovering the swirl, and turning into propeller force, as noticed from 80% of the blade span to the tip. However, the unducted and ducted BLI-configurations presented a higher backward force, 26% and 46%, respectively, compared to the conventional propeller, which can be detrimental and narrow the use of these configurations.

References

1.
Gohardani
,
A. S.
,
Doulgeris
,
G.
, and
Singh
,
R.
,
2011
, “
Challenges of Future Aircraft Propulsion: A Review of Distributed Propulsion Technology and Its Potential Application for the All Electric Commercial Aircraft
,”
Prog. Aerosp. Sci.
,
47
(
5
), pp.
369
391
.10.1016/j.paerosci.2010.09.001
2.
Menegozzo
,
L.
, and
Benini
,
E.
,
2020
, “
Boundary Layer Ingestion Propulsion: A Review on Numerical Modeling
,”
ASME J. Eng. Gas Turbines Power
,
142
(
12
), p. 120801.10.1115/1.4048174
3.
Hendricks
,
E. S.
,
2018
, “
A Review of Boundary Layer Ingestion Modeling Approach for Use in Conceptual Design
,”
NASA/TM—2018-219926
, pp.
1
44
.https://ntrs.nasa.gov/citations/20180005165
4.
Goldberg
,
C.
,
Nalianda
,
D.
,
Pilidis
,
P.
,
MacManus
,
D.
, and
Felder
,
J.
,
2016
, “
Installed Performance Assessment of a Boundary Layer Ingesting Distributed Propulsion System at Design Point
,”
AIAA
Paper No. 2016-4800.10.2514/6.2016-4800
5.
Smith
,
L. H.
,
1993
, “
Wake Ingestion Propulsion Benefit
,”
J. Propul. Power
,
9
(
1
), pp.
74
82
.10.2514/3.11487
6.
Martínez Fernández
,
A.
, and
Smith
,
H.
,
2020
, “
Effect of a Fuselage Boundary Layer Ingesting Propulsor on Airframe Forces and Moments
,”
Aerosp. Sci. Technol.
,
100
, p.
105808
.10.1016/j.ast.2020.105808
7.
Plas
,
A.
,
Crichton
,
D.
,
Sargeant
,
M.
,
Hynes
,
T.
,
Greitzer
,
E.
,
Hall
,
C.
, and
Madani
,
V.
,
2007
, “
Performance of a Boundary Layer Ingesting (BLI) Propulsion System
,”
AIAA
Paper No. 2007-450.10.2514/6.2007-450
8.
Rolt
,
A.
, and
Whurr
,
J.
,
2015
, “
Distributed Propulsion Systems to Maximize the Benefits of Boundary Layer Ingestion
,”
22nd International Symposium on Air Breathing Engines,
Phoenix, AZ, Oct. 25–30, Paper No.
2015-20288
.https://drc.libraries.uc.edu/bitstream/handle/2374.UC/745833/ISABE2015_CS%26A_Andrew%20Martin%20Rolt_76_MANUSCRIP T_20288.pdf?sequence=2
9.
Lv
,
P.
,
Rao
,
A. G.
,
Ragni
,
D.
, and
Veldhuis
,
L.
,
2016
, “
Performance Analysis of Wake and Boundary-Layer Ingestion for Aircraft Design
,”
J. Aircr.
,
53
(
5
), pp.
1517
1526
.10.2514/1.C033395
10.
Stokkermans
,
T. C. A.
,
Usai
,
D.
,
Sinnige
,
T.
, and
Veldhuis
,
L. L. M.
,
2021
, “
Aerodynamic Interaction Effects Between Propellers in Typical EVTOL Vehicle Configurations
,”
J. Aircr.
,
58
(
4
), pp.
815
833
.10.2514/1.C035814
11.
Gray
,
J. S.
,
Mader
,
C. A.
,
Kenway
,
G. K.
, and
Martins
,
J. R. R. A.
,
2017
, “
Approach to Modeling Boundary Layer Ingestion Using a Fully Coupled Propulsion-RANS Model
,”
AIAA
Paper No. 2017-1753.10.2514/6.2017-1753
12.
Romani
,
G.
,
Ye
,
Q.
,
Avallone
,
F.
,
Ragni
,
D.
, and
Casalino
,
D.
,
2020
, “
Numerical Analysis of Fan Noise for the NOVA Boundary-Layer Ingestion Configuration
,”
Aerosp. Sci. Technol.
,
96
, p.
105532
.10.1016/j.ast.2019.105532
13.
Castillo Pardo
,
A.
, and
Hall
,
C. A.
,
2021
, “
Aerodynamics of Boundary Layer Ingesting Fuselage Fans
,”
ASME J. Turbomach.
,
143
(
4
), p.
041007
.10.1115/1.4049918
14.
Mårtensson
,
H.
, and
Laban
,
M.
,
2020
, “
Design and Performance of a Boundary Layer Ingesting Fan
,”
ASME
Paper No. GT2020-15479
.10.1115/GT2020-15479
15.
Mandal
,
P.
,
Holder
,
J.
,
Turner
,
M. G.
, and
Celestina
,
M. L.
,
2020
, “
Design and Optimization of a Boundary Layer Ingesting Propulsor
,”
ASME
Paper No. GT2020-15603
.10.1115/GT2020-15603
16.
Sieradzki
,
A.
,
Kwiatkowski
,
T.
,
Turner
,
M.
, and
Łukasik
,
B.
,
2020
, “
Numerical Modeling and Design Challenges of Boundary Layer Ingesting Fans
,”
ASME
Paper No. GT2020-15374
.10.1115/GT2020-15374
17.
Hall
,
D. K.
,
Greitzer
,
E. M.
, and
Tan
,
C. S.
,
2017
, “
Analysis of Fan Stage Conceptual Design Attributes for Boundary Layer Ingestion
,”
ASME J. Turbomach.
,
139
(
7
), p. 071012.10.1115/1.4035631
18.
Kraenzler, M., Schmitt, M., and Stumpf, E., 2019, “Conceptual Design Study on Electrical Vertical Take Off and Landing Aircraft for Urban Air Mobility Applications,”
AIAA
Paper No. 2019–3124.10.2514/6.2019-3124
19.
Stuermer
,
A.
,
2008
, “
Unsteady CFD Simulations of Contra-Rotating Propeller Propulsion Systems
,”
AIAA
Paper No. 2008-5218.10.2514/6.2008-5218
20.
Stuermer
,
A. W.
, and
Akkermans
,
R. A.
,
2014
, “
Validation of Aerodynamic and Aeroacoustic Simulations of Contra-Rotating Open Rotors at Low-Speed Flight Conditions
,”
AIAA
Paper No. 2014-3133.10.2514/6.2014-3133
21.
Veble Mikic
,
G.
,
Stoll
,
A. M.
,
Bevirt
,
J.
,
Grah
,
R.
, and
Moore
,
M. D.
,
2016
, “
Fuselage Boundary Layer Ingestion Propulsion Applied to a Thin Haul Commuter Aircraft for Optimal Efficiency
,”
AIAA
Paper No. 2016-3764.10.2514/6.2016-3764
22.
Van Arnhem
,
N.
,
2015
, “
Design and Analysis of an Installed Pusher Propeller With Boundary Layer Inflow
,”
Master thesis
, Delft University of Technology, The Netherlands.https://repository.tudelft.nl/islandora/object/uuid%3A267beaa5-8b62-4e58-b1adff94355c68f9
23.
Brown
,
K. A.
,
Fleming
,
J. L.
,
Langford
,
M.
,
Ng
,
W.
,
Schwartz
,
K.
, and
Combs
,
C.
,
2019
, “
Development of a Ducted Propulsor for BLI Electric Regional Aircraft - Part I: Aerodynamic Design and Analysis
,”
AIAA
Paper No. 2019-3853.10.2514/6.2019-3853
24.
Drela
,
M.
,
2009
, “
Power Balance in Aerodynamic Flows
,”
AIAA J.
,
47
(
7
), pp.
1761
1771
.10.2514/1.42409
25.
Villar
,
G. M.
,
2016
, “
Aerodynamic Optimization of High Speed Propellers
,”
Master thesis
, Chalmers University of Technology, Gothenburg, Sweden.https://publications.lib.chalmers.se/records/fulltext/244721/244721.pdf
26.
Patrao
,
A. C.
,
Lindblad
,
D.
, and
Grönstedt
,
T.
,
2018
, “
Aerodynamic and Aeroacoustic Comparison of Optimized High-Speed Propeller Blades
,”
AIAA
Paper No. 2018-4658.10.2514/6.2018-4658
27.
Huang
,
Z.
,
Yao
,
H.
,
Lundbladh
,
A.
, and
Davidson
,
L.
,
2020
, “
Low-Noise Propeller Design for Quiet Electric Aircraft
,”
AIAA
Paper No. 2020-2596.10.2514/6.2020-2596
28.
Huang
,
Z.
,
Yao
,
H.
,
Sjögren
,
O.
,
Lundbladh
,
A.
, and
Davidson
,
L.
,
2020
, “
Aeroacoustic Analysis of Aerodynamically Optimized Joined-Blade Propeller for Future Electric Aircraft at Cruise and Take-Off
,”
Aerosp. Sci. Technol.
,
107
, p.
106336
.10.1016/j.ast.2020.106336
29.
Patrao
,
A. C.
,
2017
, “
Implementation of Blade Element Momentum/Vortex Methods
,” accessed July 25, 2022, http://publications.lib.chalmers.se/publication/253423
30.
Larrabee
,
E. E.
,
1979
, “
Practical Design of Minimum Induced Loss Propellers
,”
SAE Trans.
,
88
, pp.
2053
–20
62
.10.4271/790585
31.
Adkins
,
C. N.
, and
Liebeck
,
R. H.
,
1994
, “
Design of Optimum Propellers
,”
J. Propul. Power
,
10
(
5
), pp.
676
682
.10.2514/3.23779
32.
Drela
,
M., 2022,
“QPROP Formulation,”
Massachusetts Institue of Technology Aeronautics and Astronautics
,
Cambridge, MA
, accessed July 25, 2022, https://web.mit.edu/drela/Public/web/qprop/qprop_theory.pdf
33.
Olivier
,
P.
,
Costa
,
F. P.
,
Tomita
,
J. T.
, and
Bringhenti
,
C.
,
2019
, “
Aerodynamic Influence of Airframe Boundary Layer on Propeller Performance
,”
24th International Symposium on Air Breathing Engines,
Canberra, Australia, Sept. 22–27, Paper No.
ISABE-2019-24240
.https://www.researchgate.net/publication/337000464_Aerodynamic_influence_of_airframe_boundary_layer_on_propeller_performance
34.
Villar
,
G. M.
,
Lindblad
,
D.
, and
Andersson
,
N.
,
2018
, “
Multi-Objective Optimization of an Counter Rotating Open Rotor Using Evolutionary Algorithms
,”
AIAA
Paper No. 2018–2929.10.2514/6.2018-2929
35.
Kroo
,
I.
, and
Shevell
,
R.
, 2001, Aircraft Design: Synthesis and Analysis,
Desktop Aeronautics
,
Stanford University, Stanford, CA
.https://www.academia.edu/43367454/Aircraft_Design_Synthesis_and_Analysis
36.
Mallak
,
Z. A.
,
2018
, “
Thrust and Drag Evaluation of Boundary Layer Ingesting Aircraft
,”
Master thesis
, Chalmers University of Technology, Gothenburg, Sweden.https://hdl.handle.net/20.500.12380/255712
37.
Samuelsson
,
S.
, and
Grönstedt
,
T.
,
2021
, “
Performance Analysis of Turbo-Electric Propulsion System With Fuselage Boundary Layer Ingestion
,”
Aerosp. Sci. Technol.
,
109
, p.
106412
.10.1016/j.ast.2020.106412
38.
Kulfan
,
B.
, and
Bussoletti
,
J.
,
2006
, “
Fundamental' Parameteric Geometry Representations for Aircraft Component Shapes
,”
AIAA
Paper No. 2006-6948.10.2514/6.2006-6948
39.
Kulfan
,
B.
,
2007
, “
A Universal Parametric Geometry Representation Method - ‘CST
,”
AIAA
Paper No. 2007-0062.10.2514/6.2007-62
40.
Silva
,
V. T.
,
Lundbladh
,
A.
,
Petit
,
O.
, and
Xisto
,
C.
,
2022
, “
Multipoint Aerodynamic Design of Ultrashort Nacelles for Ultrahigh-Bypass-Ratio Engines
,”
J. Propul. Power
,
38
(
4
), pp.
541
558
.10.2514/1.B38497
41.
Petrusson
,
A.
,
2017
, “
Aerodynamic Evaluation of Nacelles for Engines With Ultra High Bypass Ratio
,”
Master thesis
, Chalmers University of Technology, Gotheburg, Sweden.https://publications.lib.chalmers.se/records/fulltext/247917/247917.pdf
42.
Zhu
,
F.
, and
Qin
,
N.
,
2014
, “
Intuitive Class/Shape Function Parameterization for Airfoils
,”
AIAA J.
,
52
(
1
), pp.
17
25
.10.2514/1.J052610
43.
Christie
,
R.
,
Heidebrecht
,
A.
, and
MacManus
,
D.
,
2017
, “
An Automated Approach to Nacelle Parameterization Using Intuitive Class Shape Transformation Curves
,”
ASME J. Eng. Gas Turbines Power
,
139
(
6
), p. 062601.10.1115/1.4035283
44.
GitHub repository for HAMON. GitHub Repository for HAMON.
45.
Patrao
,
A. C.
,
Grönstedt
,
T.
,
Avellán
,
R.
, and
Lundbladh
,
A.
,
2018
, “
Wake Energy Analysis Method Applied to the Boxprop Propeller Concept
,”
Aerosp. Sci. Technol.
,
79
, pp.
689
700
.10.1016/j.ast.2018.06.018
46.
Patrao
,
A. C.
,
Grönstedt
,
T.
,
Lundbladh
,
A.
, and
Villar
,
G. M.
,
2019
, “
Wake Analysis of an Aerodynamically Optimized Boxprop High-Speed Propeller
,”
ASME J. Turbomach.
,
141
(
9
), p.
091011
.10.1115/1.4043974
47.
Lindblad
,
D.
,
Montero Villar
,
G.
,
Andersson
,
N.
,
Capitao Patrao
,
A.
,
Courty-Audren
,
S.
, and
Napias
,
G.
,
2018
, “
Aeroacoustic Analysis of a Counter Rotating Open Rotor Based on the Harmonic Balance Method
,”
AIAA
Paper No. 2018-1004.10.2514/6.2018-1004
48.
Patrao
,
A. C.
,
2018
, “
On the Aerodynamic Design of the Boxprop
,”
Ph.D. thesis
, Chalmers University of Technology, Gothenburg, Sweden.https://research.chalmers.se/en/publication/505742
49.
Stokkermans
,
T. C. A.
,
van Arnhem
,
N.
, and
Veldhuis
,
L. L. M.
,
2016
, “
Mitigation of Propeller Kinetic Energy Losses With Boundary Layer Ingestion and Swirl Recovery Vanes
,”
Applied Aerodynamics Research Conference, Royal Aeronautical Soc., London, UK, June 14, pp. 56–69.
50.
Sanders
,
D. S.
, and
Laskaridis
,
P.
,
2020
, “
Full-Aircraft Energy-Based Force Decomposition Applied to Boundary-Layer Ingestion
,”
AIAA J.
,
58
(
10
), pp.
4357
4373
.10.2514/1.J058695
51.
ANSYS CFX-Solver Modelling Guide, Version 14.5, 2012.
52.
Mikkelson
,
D. C.
, and
Blaha
,
B. J.
,
1977
, Design and Performance of Energy Efficient Propellers for Mach 0.8 Cruise, 1977 National Business Aircraft Meeting and Exposition, Report No.
NASA TM X-73612
.https://ntrs.nasa.gov/citations/19770013165
53.
Stefko
,
G. L.
, and
Jeracki
,
R. J.
,
1985
, Wind-Tunnel Results of Advanced High-Speed Propellers at Takeoff,
Climb and Landing Mach Numbers
, NASA, Cleveland, OH, Report No.
NASA TM-87030
.https://ntrs.nasa.gov/citations/19890009894
54.
Malouin
,
B.
,
Trépanier
,
J.-Y.
, and
Laurendeau
,
É.
,
2016
, “
Installation and Interference Drag Decomposition Via RANS Far-Field Methods
,”
Aerosp. Sci. Technol.
,
54
, pp.
132
142
.10.1016/j.ast.2016.04.020
55.
Lundbladh
,
A.
,
Mårtensson
,
H.
, and
Petrusson
,
A.
,
2017
, “
Installation Effects for Ultra-High Bypass Engines
,”
23rd International Symposium of Air-Breathing Engines
, Manchester, UK, Sept. 3–8.https://chem.ckcest.cn/Proceeding/Details?id=9521
56.
Perović
,
D.
,
2019
, “Distortion Tolerant Fan Design.”
Ph.D. thesis
, University of Cambridge, Cambridge, UK.https://www.repository.cam.ac.uk/handle/1810/292447
57.
Uranga
,
A.
,
Drela
,
M.
,
Greitzer
,
E. M.
,
Hall
,
D. K.
,
Titchener
,
N. A.
,
Lieu
,
M. K.
,
Siu
,
N. M.
, et al.,
2017
, “
Boundary Layer Ingestion Benefit of the D8 Transport Aircraft
,”
AIAA J.
,
55
(
11
), pp.
3693
3708
.10.2514/1.J055755
You do not currently have access to this content.