Abstract

The nonlinear dynamics of turbine generator shaft trains for power generation are investigated in this paper. Realistic models of rotors, pedestals, and nonlinear bearings of partial arc and lemon bore configuration are implemented to compose a nonlinear set of differential equations for autonomous (balanced) and nonautonomous (unbalanced—per ISO) cases. The solution branches of the dynamic system are evaluated with the pseudo-arc length continuation programed by the authors, and the respective limit cycles are evaluated by an orthogonal collocation method and investigated on their stability properties and quality of motion for the respective key design parameters for the rotor dynamic design of such systems, namely, bearing profile and respective pad length, preload and offset, pedestal stiffness and elevation (misalignment), and rotor slenderness. Model order reduction is applied to the finite element rotor model and the reduced system is validated in terms of unbalanced response and stability characteristics. The main conclusion of the current investigation is that the system has the potential to develop instabilities at rotating speeds lower than the threshold speed of instability (evaluated by the linear approach) for specific unbalance magnitude and design properties. Unbalance response (with stable and unstable branches) is evaluated in severely reduced time compared to this applying time integration methods, enabling nonlinear rotor dynamic design of such systems as a standard procedure, and revealing the complete potential of motions (not only local).

References

1.
Hori
,
Y.
,
2006
,
Hydrodynamic Lubrication
,
Springer-Verlag
, Berlin.
2.
Khonsari
,
M.
, and
Booser
,
E.
,
2010
,
Applied Tribology: Bearing Design and Lubrication
, 3rd ed.,
Wiley, Hoboken, NJ
.
3.
Childs
,
D.
,
1993
,
Turbomachinery Rotordynamics - Phenomena, Modeling, and Analysis
,
Wiley
, Hoboken, NJ.
4.
Lund
,
J. W.
, and
Saibel
,
E.
,
1967
, “
Oil Whip Whirl Orbits of a Rotor in Sleeve Bearings
,”
ASME J. Eng. Ind.
,
89
(
4
), pp.
813
821
.10.1115/1.3610159
5.
Lund
,
J. W.
,
1974
, “
Stability and Damped Critical Speeds of a Flexible Rotor in Fluid-Film Bearings
,”
ASME J. Eng. Ind.
,
96
(
2
), pp.
509
520
.10.1115/1.3438358
6.
Pennacchi
,
P.
, and
Vania
,
A.
,
2011
, “
Analysis of the Instability Phenomena Caused by Steam in High-Pressure Turbines
,”
Shock Vib.
,
18
, pp.
593
612
.10.1155/2011/614176
7.
Bachschmid
,
N.
,
Pennacchi
,
P.
, and
Vania
,
A.
,
2008
, “
Steam-Whirl Analysis in a High Pressure Cylinder of a Turbo Generator
,”
Mech. Syst. Signal Process.
,
22
(
1
), pp.
121
132
.10.1016/j.ymssp.2007.04.005
8.
Thomas
,
H. J.
,
1958
, “
Instabile Eigenschwingungen Von Turbinenlaeufern, Angefacht Durch Die Spaltstroemungen in Stopfbuchsen Und Beschaufelungen
,”
Bull De l'AIM
,
71
(
11/12
), pp.
1039
1064
.
9.
Alford
,
J.
,
1965
, “
Protecting Turbomachinery From Self-Excited Rotor Whirl
,”
ASME J. Eng. Power
,
87
(
4
), pp.
333
344
.10.1115/1.3678270
10.
Whalen
,
J. K.
, and
Leader
,
M. E.
,
2003
, “
Solving Stability Problems While Commissioning a 100 MW Turbine Generator Set
,”
Proceedings of the 32nd Turbomachinery Symposium
, Houston, TX, Sept. 8–11, pp.
1
8
.10.21423/R1907Q
11.
Muszynska
,
A.
,
1986
, “
Whirl and Whip – Rotor/Bearing Stability Problems
,”
J. Sound Vib.
,
110
(
3
), pp.
443
462
.10.1016/S0022-460X(86)80146-8
12.
Kanki
,
H.
,
Fujii
,
H.
,
Hizume
,
A.
,
Ichimura
,
T.
, and
Yamamoto
,
T.
,
1986
, “
Solving Nonsynchronous Vibration Problems of Large Rotating Machineries by Exciting Test in Actual Operating Condition
,”
Proceedings of IFToMM International Conference on Rotordynamics
, Tokyo, Japan, pp.
221
225
.
13.
Ehehalt
,
U.
,
Alber
,
O.
,
Markert
,
R.
, and
Wegener
,
G.
,
2019
, “
Experimental Observations on Rotor-to-Stator Contact
,”
J. Sound Vib.
,
446
, pp.
453
467
.10.1016/j.jsv.2019.01.008
14.
Morton
,
P. G.
,
2008
, “
Unstable Shaft Vibrations Arising From Thermal Effects Due to Oil Shearing Between Stationary and Rotating Elements
,”
IMechE Ninth International Conference on Vibrations in Rotating Machinery
, Exeter, UK, Sept., pp.
383
392
.
15.
de Jongh
,
F.
,
2018
, “
The Synchronous Rotor Instability Phenomenon – Morton Effect
,”
47th Turbomachinery and 34th Pump Symposia
, Houston, TX, Sept., pp.
17
26
.10.21423/R1606D
16.
DiPrima
,
R.
,
1963
, “
A Note on the Stability of Flow in Loaded Journal Bearings
,”
ASLE Trans.
,
6
, pp.
249
253
.10.1080/05698196308972019
17.
Mayers
,
C.
,
1984
, “
Bifurcation Theory Applied to Oil Whirl in Plain Cylindrical Journal Bearings
,”
ASME J. Appl. Mech.
,
51
(
2
), pp.
244
250
.10.1115/1.3167607
18.
Hollis
,
P.
, and
Taylor
,
D.
,
1986
, “
Hopf Bifurcation to Limit Cycles in Fluid Film Bearings
,”
ASME J. Tribol.
,
108
(
2
), pp.
184
189
.10.1115/1.3261158
19.
Muszynska
,
A.
,
1988
, “
Stability of Whirl and Whip in Rotor/Bearing Systems
,”
J. Sound Vib.
,
127
(
1
), pp.
49
64
.10.1016/0022-460X(88)90349-5
20.
Crooijmans
,
M. T. M.
,
Brouwers
,
H. J. H.
,
van Campen
,
D. H.
, and
de Kraker
,
A.
,
1990
, “
Limit Cycle Predictions of a Nonlinear Journal-Bearing System
,”
ASME J. Eng. Ind.
,
112
(
2
), pp.
168
185
.10.1115/1.2899561
21.
Ehrich
,
F.
,
1992
, “
Observations of Subcritical Superharmonic and Chaotic Response in Rotordynamics
,”
ASME J. Vib. Acoust.
,
114
(
1
), pp.
93
100
.10.1115/1.2930240
22.
Noah
,
S.
, and
Sundararajan
,
P.
,
1995
, “
Significance of Considering Nonlinear Effects in Predicting the Dynamic Behavior of Rotating Machinery
,”
J. Vib. Control
,
1
, pp.
431
458
.10.1177/107754639500100403
23.
Chen
,
C. S.
,
Natsiavas
,
S.
, and
Nelson
,
H. D.
,
1997
, “
Stability Analysis and Complex Dynamics of a Gear-Pair System Supported by a Squeeze Film Damper
,”
ASME J. Vib. Acoust.
,
119
(
1
), pp.
85
88
.10.1115/1.2889691
24.
Theodossiades
,
S.
, and
Natsiavas
,
S.
,
2001
, “
On Geared Rotordynamic Systems With Oil Journal Bearings
,”
J. Sound Vib.
,
243
(
4
), pp.
721
745
.10.1006/jsvi.2000.3430
25.
Wang
,
J.
, and
Khonsari
,
M.
,
2006
, “
Bifurcation Analysis of a Flexible Rotor Supported by Two Fluid-Film Journal Bearings
,”
ASME J. Tribol.
,
128
(
3
), pp.
594
603
.10.1115/1.2197842
26.
Wang
,
J.
, and
Khonsari
,
M.
,
2006
, “
Prediction of Stability Envelope of Rotor-Bearing Systems
,”
ASME J. Vib. Acoust.
,
128
(
2
), pp.
197
202
.10.1115/1.2159035
27.
Miraskari
,
M.
,
Hemmati
,
F.
, and
Gadala
,
M.
,
2018
, “
Nonlinear Dynamics of Flexible Rotors Supported on Journal Bearings - Part II: Numerical Bearing Model
,”
ASME J. Tribol.
,
140
(
2
), p.
021705
.10.1115/1.4037731
28.
Shoyama
,
T.
,
2019
, “
Nonlinear Vibration of Saturated Water Journal Bearing and Bifurcation Analysis
,”
ASME J. Vib. Acoust.
,
141
(
2
), p.
021016
.10.1115/1.4042041
29.
Chasalevris
,
A.
,
2020
, “
Stability and Hopf Bifurcations in Rotor-Bearing-Foundation Systems of Turbines and Generators
,”
Tribol. Int.
,
145
, p.
106154
.10.1016/j.triboint.2019.106154
30.
Runeng
,
Z.
,
Yongpeng
,
G.
,
Jiang
,
C.
,
Gexue
,
R.
, and
Suyuan
,
Y.
,
2021
, “
Nonlinear Dynamic Analysis of Supercritical and Subcritical Hopf Bifurcations in Gas Foil Bearing-Rotor Systems
,”
Nonlinear Dyn.
,
103
, pp.
2241
2256
.10.1007/s11071-021-06234-4
31.
Nayfeh
,
A. H.
, and
Mook
,
D.
,
1979
,
Nonlinear Oscillations
,
Wiley
, Hoboken, NJ.
32.
Allgower
,
E. L.
, and
Georg
,
K.
,
2003
,
Introduction to Numerical Continuation Methods
,
Society for Industrial and Applied Mathematics Society for Industrial and Applied Mathematics
, Philadelphia, PA.
33.
Meijer
,
H.
,
Dercole
,
F.
, and
Olderman
,
B.
,
2009
, “
Numerical Bifurcation Analysis
,”
Encyclopedia of Complexity and Systems Science
,
R. A.
Meyers
ed.,
Springer
,
New York
, pp.
6329
6352
.
34.
Kuznetsov
,
Y. A.
,
1998
,
Elements of Applied Bifurcation Theory 2nd ed., Ser. Applied Mathematical Sciences
,
Springer
,
New York
.
35.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1995
,
Applied Nonlinear Dynamics
,
J. Wiley & Sons
, Hoboken, NJ.
36.
Doedel
,
E. J.
,
Keller
,
H. B.
, and
Kernevez
,
J. P.
,
1991
, “
Numerical Analysis and Control of Bifurcation Problems (II) Bifurcation in Infinite Dimensions
,”
Int. J. Bifurcation Chaos
,
1
(
3
), pp.
745
772
.10.1142/S0218127491000555
37.
Doedel
,
E. J.
,
Lecture Notes on Numerical Analysis of Nonlinear Equations
,
Department of Computer Science, Concordia University
,
Montreal, QC, Canada
.
38.
Boyaci
,
A.
,
Hetzler
,
H.
,
Seemann
,
W.
,
Proppe
,
C.
, and
Wauer
,
J.
,
2009
, “
Analytical Bifurcation Analysis of a Rotor Supported by Floating Ring Bearings
,”
Nonlinear Dyn.
,
57
, pp.
497
507
.10.1007/s11071-008-9403-x
39.
Boyaci
,
A.
,
Lu
,
D.
, and
Schweizer
,
B.
,
2015
, “
Stability and Bifurcation Phenomena of Laval/Jeffcott Rotors in Semi-Floating Ring Bearings
,”
Nonlinear Dyn.
,
79
, pp.
1535
1561
.10.1007/s11071-014-1759-5
40.
van Breemen
,
F. C.
,
2016
, “
Stability Analysis of a Laval Rotor on Hydrodynamic Bearings by Numerical Continuation: Investigating the Influence of Rotor Flexibility, Rotor Damping and External Oil Pressure on the Rotordynamic Behaviour
,” M.Sc. thesis,
Delft University of Technology
, Delft, The Netherlands.
41.
Rubel
,
J.
,
2009
, “
Vibrations in Nonlinear Rotordynamics
,” Ph.D. dissertation,
Ruprecht-Karls-Universität Heidelberg
, Heidelberg, Germany.
42.
Amamou
,
A.
, and
Chouchane
,
M.
,
2011
, “
Bifurcation of Limit Cycles in Fluid Film Bearings
,”
Int. J. Non-Linear Mech.
,
46
, pp.
1258
1264
.10.1016/j.ijnonlinmec.2011.06.005
43.
Sghir
,
R.
, and
Chouchane
,
M.
,
2015
, “
Prediction of the Nonlinear Hysteresis Loop for Fluid-Film Bearings by Numerical Continuation
,”
Proc. IMechE Part C: J Mech. Eng. Scienc
,
229
(
4
), pp.
651
662
.10.1177/0954406214538618
44.
Sghir
,
R.
, and
Chouchane
,
M.
,
2016
, “
Nonlinear Stability Analysis of a Flexible Rotor-Bearing System by Numerical Continuation
,”
J. Vib. Control
,
22
(
13
), pp.
3079
3089
.10.1177/1077546314558133
45.
Anastasopoulos
,
L.
, and
Chasalevris
,
A.
,
2022
, “
Bifurcations of Limit Cycles in Rotating Shafts Mounted on Partial Arc and Lemon Bore Journal Bearings in Elastic Pedestals
,”
ASME J. Comput. Nonlin. Dyn.
,
17
(
6
), p.
061003
.10.1115/1.4053593
46.
Becker
,
K.
,
2019
, “
Dynamisches Verhalten hydrodynamisch gelagerter Rotoren unter berücksichtigung veranderlicher Lagergeometrienm
,” Ph.D. dissertation,
Karlsruhe Institute of Technology
, Karlsruhe, Germany.
47.
Leister
,
T.
,
2021
, “
Dynamics of Rotors on Refrigerant Lubricated Gas Foil Bearings
,” Ph.D. dissertation,
Karlsruhe Institute of Technology
, Karlsruhe, Germany.
48.
Kim
,
S.
, and
Palazzolo
,
A.
,
2017
, “
Bifurcation Analysis of a Rotor Supported by Five-Pad Tilting Pad Journal Bearings Using Numerical Continuation
,”
Int. J. Non-Linear Mech.
,
95
, pp.
30
41
.10.1016/j.ijnonlinmec.2017.05.003
49.
Kim
,
S.
, and
Palazzolo
,
A.
,
2017
, “
Shooting With Deflation Algorithm-Based Nonlinear Response and Neimark-Sacker Bifurcation and Chaos in Floating Ring Bearing System
,”
ASME J. Comput. Nonlin. Dyn.
,
12
(
3
), p.
031003
.10.1115/1.4034733
50.
Kim
,
S.
, and
Palazzolo
,
A.
,
2018
, “
Shooting/Continuation Based Bifurcation Analysis of Large Order Nonlinear Rotordynamic Systems
,”
ΜATEC Web Conferences VETOMAC XIV
, Lisbon, Portugal, Sept. 10–13, Vol. 211, p.
18003
.10.1051/matecconf/201821118003
51.
Constantinescu
,
V. N.
,
1959
, “
On Turbulent Lubrication
,”
Proc. Inst. Mech. Eng.
,
173
, pp.
881
889
.10.1243/PIME_PROC_1959_173_068_02
52.
Elrod
,
H.
,
1981
, “
A Cavitation Algorithm
,”
ASME J. Lubr. Technol.
,
103
(
3
), pp.
350
354
.10.1115/1.3251669
53.
Jakobson
,
B.
, and
Floberg
,
L.
,
1957
,
The Finite Journal Bearing Considering Vaporization
,
Transactions of Chalmers University Technology
,
Goteborg, Sweden
, Vol. 190, pp.
1
119
.
54.
Stieber
,
W.
,
1933
,
Das Schwimmlager: Hydrodynamische Theorie Des Gleitlagers
,
V.D.I. Verlag GMBH
,
Berlin, Goteborg, Sweden
,
190
, p.
106
.
55.
Gumbel
,
L.
,
1914
,
Das Problem Der Lagerreibung
,
Mon. Berl. Bezirksverein, V.D.I
,
5
, pp.
87
104
and
109
120
.
56.
Broyden
,
C. G.
,
1965
, “
A Class of Methods for Solving Nonlinear Simultaneous Equations
,”
Math. Computation
,
19
(
92
), pp.
577
593
.10.1090/S0025-5718-1965-0198670-6
57.
Kuznetsov
,
Y. A.
,
Govaerts
,
W.
,
Doedel
,
E. J.
, and
Dhooge
,
A.
,
2005
, “
Numerical Periodic Normalization for Codim 1 Bifurcations of Limit Cycles
,”
SIAM J. Numer. Anal.
,
43
(
4
), pp.
1407
1435
.10.1137/040611306
58.
Ascher
,
U. M.
,
Mattheij
,
R. M. M.
, and
Russell
,
R. D.
,
1995
, “
Numerical Solution of Boundary Value Problems for Ordinary Differential Equations
,”
SIAM Classics in Applied Mathematics Ser. 13
, 1st ed., SIAM, Philadelphia, PA.
You do not currently have access to this content.