Abstract

Understanding of the fluid–structure interaction phenomena in centrifugal compressors is essential for the impeller structural integrity design. To enhance the understanding of blade vibration in a realistic flow environment, a single-stage centrifugal compressor representative of industrial architecture has been investigated experimentally. For deterministic synchronous vibrations, the response amplitudes at different operating lines are measured and compared. The fundamental relations between flow excitation and rotor modal resonance are established by pairwise strain gages from experimental perspective. Compared with the third mode, the impeller first bending mode shows traveling wave response characteristic only within the frequency band where two adjacent blades have the same resonant frequency. Besides, the impeller encounters unexpected nonsynchronous vibrations when operating near the flow instability boundary. Speed ramp tests show that the stall cell propagating speed increases along with the rotor rotational speed without changing the cell count. Response amplification is further measured when throttling the compressor into stall. Experimental findings point toward vaned diffuser rotating stall and the corresponding propagating pressure waves in circumference leads to the impeller vibration. The aerodynamic asymmetry of stall cells increases the possibility of aeroelastic coupling with the blade modes. These results contribute to an in-depth understanding of the aeroelastic phenomena in industrial centrifugal compressors. The observed nonsynchronous vibration is important for the aeroelastic design and also of great interest for numerical predictions near stall.

References

1.
He
,
X.
, and
Zheng
,
X.
,
2019
, “
Roles and Mechanisms of Casing Treatment on Different Scales of Flow Instability in High Pressure Ratio Centrifugal Compressors
,”
Aerosp. Sci. Technol.
,
84
, pp.
734
746
.10.1016/j.ast.2018.10.015
2.
Mischo
,
B.
,
Jenny
,
P.
,
Bidaut
,
Y.
,
Fonzi
,
N.
,
Hermann
,
D.
, and
Wirsum
,
M. C.
,
2020
, “
Experimental Investigation for Enhanced Control of Rotating Unsteady Flow Instabilities in an Unshrouded Centrifugal Compressor Impeller
,”
ASME J. Turbomach.
,
142
(
1
), p.
011001
.10.1115/1.4045079
3.
Lu
,
Y.
,
Lad
,
B.
, and
Vahdati
,
M.
,
2021
, “
Transonic Fan Blade Redesign Approach to Attenuate Nonsynchronous Vibration
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071007
.10.1115/1.4050023
4.
Holzinger
,
F.
,
Wartzek
,
F.
,
Jüngst
,
M.
,
Schiffer
,
H.-P.
, and
Leichtfuss
,
S.
,
2016
, “
Self-Excited Blade Vibration Experimentally Investigated in Transonic Compressors: Rotating Instabilities and Flutter
,”
ASME J. Turbomach.
,
138
(
4
), p.
041006
.10.1115/1.4032163
5.
Baumgartner
,
M.
,
Kameier
,
F.
, and
Hourmouziadis
,
J.
,
1995
, “
Non-Engine Order Blade Vibration in a High Pressure Compressor
,”
Twelfth International Symposium on Airbreathing Engines (ISABE)
, Melbourne, Australia, Sept. 10–15, Paper No. ISABE-1995-7094.
6.
Pan
,
T.
,
Yan
,
Z.
,
Lu
,
H.
, and
Li
,
Q.
,
2021
, “
Numerical Investigation on the Forced Vibration Induced by the Low Engine Order Under Boundary Layer Ingestion Condition
,”
Aerosp. Sci. Technol.
,
115
, p.
106802
.10.1016/j.ast.2021.106802
7.
Zemp
,
A.
,
Abhari
,
R. S.
, and
Ribi
,
B.
,
2011
, “
Experimental Investigation of Forced Response Impeller Blade Vibration in a Centrifugal Compressor With Variable Inlet Guide Vanes: Part 1—Blade Damping
,”
ASME
Paper No. GT2011-46289.10.1115/GT2011-46289
8.
Zemp
,
A.
, and
Abhari
,
R. S.
,
2013
, “
Vaned Diffuser Induced Impeller Blade Vibrations in a High-Speed Centrifugal Compressor
,”
ASME J. Turbomach.
,
135
(
2
), p.
021015
.10.1115/1.4007515
9.
Walton
,
E. J.
, and
Tan
,
C. S.
,
2016
, “
Forced Response of a Centrifugal Compressor Stage Due to the Impeller–Diffuser Interaction
,”
ASME J. Turbomach.
,
138
(
9
), p.
091004
.10.1115/1.4032838
10.
Kammerer
,
A.
, and
Abhari
,
R. S.
,
2009
, “
Experimental Study on Impeller Blade Vibration During Resonance Part I: Blade Vibration Due to Inlet Flow Distortion
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
022508
.10.1115/1.2968869
11.
Kammerer
,
A.
, and
Abhari
,
R. S.
,
2010
, “
The Cumulative Effects of Forcing Function, Damping, and Mistuning on Blade Forced Response in a High Speed Centrifugal Compressor With Inlet Distortion
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
122505
.10.1115/1.4001084
12.
Degendorfer
,
C.
,
Abhari
,
R. S.
,
Vogel
,
K.
, and
Hunziker
,
R.
,
2018
, “
Experimental and Numerical Investigation of Blade Resonance in a Centrifugal Compressor for Varying Gas Properties
,”
J. Glob. Power Propuls. Soc.
,
2
, pp.
415
428
.10.22261/JGPPS.Q15CRP
13.
Zemp
,
A.
,
Abhari
,
R. S.
, and
Schleer
,
M.
,
2011
, “
Experimental Investigation of Forced Response Impeller Blade Vibration in a Centrifugal Compressor With Variable Inlet Guide Vanes: Part 2—Forcing Function and FSI Computations
,”
ASME
Paper No. GT2011-46290.10.1115/GT2011-46290
14.
Neri
,
P.
,
Bertini
,
L.
,
Santus
,
C.
, and
Guglielmo
,
A.
,
2019
, “
Generalized SAFE Diagram for Mistuned Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111020
.10.1115/1.4045078
15.
Stapelfeldt
,
S.
, and
Brandstetter
,
C.
,
2020
, “
Non-Synchronous Vibration in Axial Compressors: Lock-In Mechanism and Semi-Analytical Model
,”
J. Sound Vib.
,
488
, p.
115649
.10.1016/j.jsv.2020.115649
16.
Han
,
L.
,
Wei
,
D.
,
Wang
,
Y.
,
Jiang
,
X.
, and
Zhang
,
X.
,
2021
, “
Analysis Method of Nonsynchronous Vibration and Influence of Tip Clearance Flow Instabilities on Nonsynchronous Vibration in an Axial Transonic Compressor Rotor
,”
ASME J. Turbomach.
,
143
(
11
), p.
111014
.10.1115/1.4051171
17.
Jenny
,
P.
, and
Bidaut
,
Y.
,
2016
, “
Experimental Determination of Mechanical Stress Induced by Rotating Stall in Unshrouded Impellers of Centrifugal Compressors
,”
ASME J. Turbomach.
,
139
(
3
), p.
031011
.10.1115/1.4034984
18.
Ziada
,
S.
,
Oengören
,
A.
, and
Vogel
,
A.
,
2002
, “
Acoustic Resonance in the Inlet Scroll of a Turbo-Compressor
,”
J. Fluids Struct.
,
16
(
3
), pp.
361
373
.10.1006/jfls.2001.0421
19.
Day
,
I. J.
,
2015
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.10.1115/1.4031473
20.
Pullan
,
G.
,
Young
,
A. M.
,
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), p.
051007
.10.1115/1.4028494
21.
Eck
,
M.
,
Rückert
,
R.
,
Peitsch
,
D.
, and
Lehmann
,
M.
,
2020
, “
Prestall Instability in Axial Flow Compressors
,”
ASME J. Turbomach.
,
142
(
7
), p.
071009
.10.1115/1.4046447
22.
Brandstetter
,
C.
,
Jüngst
,
M.
, and
Schiffer
,
H.-P.
,
2018
, “
Measurements of Radial Vortices, Spill Forward, and Vortex Breakdown in a Transonic Compressor
,”
ASME J. Turbomach.
,
140
(
6
), p.
061004
.10.1115/1.4039053
23.
Weichert
,
S.
, and
Day
,
I.
,
2013
, “
Detailed Measurements of Spike Formation in an Axial Compressor
,”
ASME J. Turbomach.
,
136
(
5
), p.
051006
.10.1115/1.4025166
24.
Haupt
,
U.
,
Abdelhamid
,
A. N.
,
Kaemmer
,
N.
, and
Rautenberg
,
M.
,
1986
, “
Excitation of Blade Vibration by Flow Instability in Centrifugal Compressors
,”
ASME
Paper No. 86-GT-283.10.1115/86-GT-283
25.
Chen
,
J.
,
Hasemann
,
H.
,
Seidel
,
U.
,
Jin
,
D.
,
Huang
,
X.
, and
Rautenberg
,
M.
,
1993
, “
The Interpretation of Internal Pressure Patterns of Rotating Stall in Centrifugal Compressor Impellers
,”
ASME
Paper No. 93-GT-192.10.1115/93-GT-192
26.
Jin
,
D.
,
Haupt
,
U.
,
Hasemann
,
H.
, and
Rautenberg
,
M.
,
1992
, “
Blade Excitation by Circumferentially Asymmetric Rotating Stall in Centrifugal Compressors
,”
ASME
Paper No. 92-GT-148.10.1115/92-GT-148
27.
Spakovszky
,
Z. S.
, and
Roduner
,
C. H.
,
2009
, “
Spike and Modal Stall Inception in an Advanced Turbocharger Centrifugal Compressor
,”
ASME J. Turbomach.
,
131
(
3
), p.
031012
.10.1115/1.2988166
28.
Bertini
,
L.
,
Neri
,
P.
,
Santus
,
C.
,
Guglielmo
,
A.
, and
Mariotti
,
G.
,
2014
, “
Analytical Investigation of the SAFE Diagram for Bladed Wheels, Numerical and Experimental Validation
,”
J. Sound Vib.
,
333
(
19
), pp.
4771
4788
.10.1016/j.jsv.2014.04.061
29.
Rodrigues
,
M.
,
Soulat
,
L.
,
Paoletti
,
B.
,
Ottavy
,
X.
, and
Brandstetter
,
C.
,
2021
, “
Aerodynamic Investigation of a Composite Low-Speed Fan for UHBR Application
,”
ASME J. Turbomach.
,
143
(
10
), p.
101004
.10.1115/1.4050671
30.
Dodds
,
J.
, and
Vahdati
,
M.
,
2015
, “
Rotating Stall Observations in a High Speed Compressor—Part I: Experimental Study
,”
ASME J. Turbomach.
,
137
(
5
), p.
051002
.10.1115/1.4028557
31.
Spakovszky
,
Z. S.
,
2004
, “
Backward Traveling Rotating Stall Waves in Centrifugal Compressors
,”
ASME J. Turbomach.
,
126
(
1
), pp.
1
12
.10.1115/1.1643382
32.
Fiquet
,
A.-L.
,
Brandstetter
,
C.
,
Aubert
,
S.
, and
Philit
,
M.
,
2019
, “
Non-Synchronous Aeroacoustic Interaction in an Axial Multi-Stage Compressor
,”
ASME J. Turbomach.
,
141
(
10
), p.
101013
.10.1115/1.4044675
33.
Zhao
,
X.
,
Li
,
H.
,
Yang
,
S.
,
Fan
,
Z.
,
Dong
,
J.
, and
Cao
,
H.
,
2021
, “
Blade Vibration Measurement and Numerical Analysis of a Mistuned Industrial Impeller in a Single-Stage Centrifugal Compressor
,”
J. Sound Vib.
,
501
, p.
116068
.10.1016/j.jsv.2021.116068
34.
Brandstetter
,
C.
,
Ottavy
,
X.
,
Paoletti
,
B.
, and
Stapelfeldt
,
S.
,
2021
, “
Interpretation of Stall Precursor Signatures
,”
ASME J. Turbomach.
,
143
(
12
), p.
121011
.10.1115/1.4051709
35.
Hackenberg
,
H.-P.
, and
Hartung
,
A.
,
2016
, “
An Approach for Estimating the Effect of Transient Sweep Through a Resonance
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), p.
082502
.10.1115/1.4032664
36.
Maroldt
,
N.
,
Amer
,
M.
, and
Seume
,
J. R.
,
2022
, “
Forced Response Due to Vane Stagger Angle Variation in an Axial Compressor
,”
ASME J. Turbomach.
,
144
(
8
), p.
081011
.10.1115/1.4053839
37.
Mischo
,
B.
,
Jenny
,
P.
,
Mauri
,
S.
,
Bidaut
,
Y.
,
Kramer
,
M.
, and
Spengler
,
S.
,
2018
, “
Numerical and Experimental Fluid–Structure Interaction-Study to Determine Mechanical Stresses Induced by Rotating Stall in Unshrouded Centrifugal Compressor Impellers
,”
ASME J. Turbomach.
,
140
(
11
), p.
111006
.10.1115/1.4041400
38.
Liang
,
F.
,
Xie
,
Z.
,
Xia
,
A.
, and
Zhou
,
M.
,
2020
, “
Aeroelastic Simulation of the First 1.5-Stage Aeroengine Fan at Rotating Stall
,”
Chin. J. Aeronaut.
,
33
(
2
), pp.
529
549
.10.1016/j.cja.2019.05.004
You do not currently have access to this content.