Abstract

Multidisk bladeless turbines, also known as Tesla turbines, are promising in the field of small-scale power generation and energy harvesting due to their low sensitivity to down-scaling effects, retaining high rotor efficiency. However, low (less than 40%) overall isentropic efficiency has been recorded in the experimental literature. This article aims for the first time to a systematic experimental characterization of loss mechanisms in a 3 kW Tesla expander using compressed air as working fluid and producing electrical power through a high-speed generator (40 krpm). The sources of losses discussed are stator losses, stator–rotor peripheral viscous losses, end-wall ventilation losses, and leakage losses. After description of experimental prototype, methodology, and assessment of measurement accuracy, the article discusses such losses aiming at separating the effects that each loss has on the overall performance. Once effects are separated, their individual impact on the overall efficiency curves is presented. This experimental investigation, for the first time, gives the insight into the actual reasons of low performance of Tesla turbines, highlighting critical areas of improvement, and paving the way to next-generation Tesla turbines, competitive with state-of-the-art bladed expanders.

References

1.
Renuke
,
A.
,
Reggio
,
F.
,
Pascenti
,
M.
,
Silvestri
,
P.
, and
Traverso
,
A.
,
2020
, “
Experimental Investigation on a 3 kW Tesla Expander With High Speed Generator
,”
ASME
Paper No. GT2020-14572.10.1115/GT2020-14572
2.
Tesla
,
N.
,
1913
, “
Turbine
,” U.S. Patent No. 1061206.
3.
Tesla
,
N.
,
1913
, “
Fluid Propulsion
,” U.S. Patent No. 1061142.
4.
Rice
,
W.
,
1965
, “
An Analytical and Experimental Investigation of Multiple Disk Turbines
,”
ASME J. Eng. Power
,
87
(
1
), pp.
29
36
.10.1115/1.3678134
5.
Boyack
,
B. E.
, and
Rice
,
W.
,
1971
, “
Integral Method for Flow Between Corotating Disks
,”
ASME J. Basic Eng.
,
93
(
3
), pp.
350
354
.10.1115/1.3425252
6.
Bassett
,
C. E.
,
1975
, “
An Integral Solution for Compressible Flow Through Disc Turbines
,”
Proceedings of the Tenth Intersociety Energy Conversion Engineering Conference,
Newark, Delaware, Aug. 17–22, pp.
1098
1106
.https://www.researchgate.net/publication/260480066_An_Integral_Solution_for_Compressible_Flow_Through_Disc_Turbines
7.
Rice
,
W.
,
1991
, “
Tesla Turbomachinery
,”
Proceedings of IV International Nikola Tesla Symposium,
Serbian Academy of Sciences and Arts, Belgrade, Yugoslavia, Sept. 23–25, pp.
117
125
.https://www.gyroscope.com/images/teslaturbine/TeslaTurboMachinery.pdf
8.
Ladino
,
A. F. R.
,
2004
, “Numerical Simulation of the Flow Field in a Friction–Type Turbine (Tesla Turbine),”
Ph.D. thesis
, National University of Colombia, Colombia
.https://www.semanticscholar.org/paper/Numerical-Simulation-of-the-Flow-Field-in-a-Turbine-Ladino/c6d89c64061861bf531e8bfc85b2aae11b3f4143
9.
Hoya
,
G.
, and
Guha
,
B.
,
2009
, “
The Design of a Test Rig and Study of the Performance and Efficiency of a Tesla Disc Turbine
,”
J. Power Energy
,
223
(
4
), pp.
451
465
.10.1243/09576509JPE664
10.
Guha
,
A.
, and
Smiley
,
B.
,
2010
, “
Experiment and Analysis for an Improved Design of the Inlet and Nozzle in Tesla Disc Turbines
,”
J. Power Energy
,
224
(
2
), pp.
261
277
.10.1243/09576509JPE818
11.
Sengupta, S., and Guha
,
A.
,
2018
, “
Inflow-Rotor Interaction in Tesla Disc Turbines: Effect of Discrete Inflows, Finite Disk Thickness and the Radial Clearance on the Fluid Dynamics and the Performance of the Turbine
,”
Proc. Inst. Mech. Eng., Part A,
232(8), pp. 971–991.10.1177/0957650918764156
12.
Okamoto
,
A.
,
Goto
,
K.
,
Teramoto
,
S.
, and
Yamaguchi
,
K.
,
2017
, “
Experimental Investigation of Inflow Condition Effects on Tesla Turbine Performance
,” Proceedings of the ISABE Conference 2017, Manchester, UK, Sept. 3–8
.
13.
Talluri
,
L.
,
Fiaschi
,
D.
,
Neri
,
G.
, and
Ciappi
,
L.
,
2018
, “
Design and Optimization of a Tesla Turbine for ORC Applications
,”
Appl. Energy
,
226
, pp.
300
319
.10.1016/j.apenergy.2018.05.057
14.
Renuke
,
A.
,
Vannoni
,
A.
,
Pascenti
,
M.
, and
Traverso
,
A.
,
2019
, “
Experimental and Numerical Investigation of Small Scale Tesla Turbines
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121011
.10.1115/1.4044999
15.
Renuke
,
A.
,
Pascenti
,
M.
, and
Traverso
,
A.
,
2019
, “
Performance Assessment of Bladeless Micro-Expander Using 3D Numerical Simulation
,”
E3S Web Conf.
,
113
, p.
03016
.10.1051/e3sconf/201911303016
16.
Renuke
,
A.
,
Pascenti
,
M.
, and
Traverso
,
A.
,
2019
, “
Experimental Campaign Tests on Tesla Micro-Expanders
,”
E3S Web Conf.
,
113
, p.
03015
.10.1051/e3sconf/201911303015
17.
Benedict
,
R. P.
,
Wyler
,
J. S.
,
Dudek
,
J. A.
, and
Gleed
,
A. R.
,
1976
, “
Generalized Flow Across an Abrupt Enlargement
,”
Trans. ASME J. Eng. Power
,
98
(
3
), pp.
327
334
.10.1115/1.3446171
18.
Cohen
,
H.
,
Rogers
,
G. F. C.
, and
Saravanamuttoo
,
1996
,
H. I. H. Gas Turbine Theory
, 4th ed.,
Longman Group Ltd
,
Cornwall, UK
.
19.
Daily
,
J. W.
, and
Nece
,
R. E.
,
1960
, “
Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
217
230
.10.1115/1.3662532
20.
Hu
,
Bo.
,
Brillert
,
D.
,
Dohmen
,
H. J.
, and
Benra
,
F.
,
2017
, “
Investigation on the Flow in a Rotor-Stator Cavity With Centripetal Through-Flow
,”
Int. J. Turbomach. Propul. Power
,
2
, p.
18
.10.3390/ijtpp2040018
You do not currently have access to this content.