Abstract

This paper aims to assess the gas turbine operability and overall hybrid electric propulsion system (HEPS) performance for a parallel configuration applied to a 150 passenger single-aisle aircraft. Two arrangements are considered: one where the low-pressure (LP) shaft is boosted and one where the high-pressure (HP) shaft is boosted. For identifying limits in the hybridization strategy, steady-state and transient operation are considered, and the hybridization effect on compressor operability is determined. Having established the electric power on-take limits with respect to gas turbine operation, the systems performance at aircraft level is quantified for the relevant cases. Different power management strategies (PMS) are applied for the two arrangements and for different power degrees of hybridization. The results indicate that despite the fact that pollutant emission and fuel consumption may improve for hybrid propulsion, this comes at the cost of reduced payload and operability margins. Boosting the LP shaft may give the highest engine performance benefits but with a significant weight penalty, while the LP compressor system operability is negatively affected. On the other hand, boosting the HP shaft provides lower engine performance benefits but with smaller weight penalty and with less operability concerns.

References

1.
Airbus
,
2019
, “
Global Market Forecast 2019-2038
,”
Airbus
, Leiden, The Netherlands.
2.
ICAO
,
2020
, “
Climate Change
,” ICAO, Montréal, QC, Canada, accessed Jan. 23, 2020, https://www.icao.int/environmental-protection/pages/climate-change.aspx
3.
European Commission,
2011
, “
Flightpath 2050: Europe's Vision for Aviation
,” Report of the High Level Group on Aviation Research, Publications Office of the European Union, Luxembourg, Report.
4.
Seitz
,
A.
,
Schmitz
,
O.
,
Isikveren
,
A. T.
, and
Hornung
,
M.
,
2012
, “
Electrically Powered Propulsion: Comparison and Contrast to Gas Turbines
,” Deutscher Luft- und Raumfahrtkongress 2012, Berlin, Germany, Sept., Paper No.
281358
.https://www.researchgate.net/publication/274705562_Electrically_Powered_Propulsion_Comparison_and_Contrast_to_Gas_Turbines
5.
Warwick
,
G.
,
2020
, “
What Are the Advantages and Challenges of Electric-Powered Airliners?
,” Aviation Week, New York, accessed Aug. 5, 2020, https://aviationweek.com/aerospace/aircraft-propulsion/what-are-advantages-challenges-electric-powered-airliners
6.
Schneider
,
M.
,
Dickhoff
,
J.
,
Kusterer
,
K.
,
Visser
,
W.
,
Stumpf
,
E.
,
Hofmann
,
J. P.
, and
Bohn
,
D.
,
2019
, “
Development of a Gas Turbine Concept for Electric Power
,”
ASME
Paper No. GT2019-92065.10.1115/GT2019-92065
7.
National Academies of Science, Engineering and Medicine,
2016
, “
Electric Propulsion
,”
Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions
,
The National Academies Press
,
Washington, DC
, pp.
51
70
.
8.
Seitz
,
A.
,
Nickl
,
M.
,
Stroh
,
A.
, and
Vratny
,
P. C.
,
2018
, “
Conceptual Study of a Mechanically Integrated Parallel Hybrid Electric Turbofan
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
232
(
14
), pp.
2688
2712
.10.1177/0954410018790141
9.
Masson
,
P. J.
,
Brown
,
G. V.
,
Soban
,
D. S.
, and
Luongo
,
C. A.
,
2007
, “
HTS Machines as Enabling Technology for All-Electric Airborne Vehicles
,”
Supercond. Sci. Technol.
,
20
(
8
), pp.
748
756
.10.1088/0953-2048/20/8/005
10.
Tomaszewska
,
A.
,
Chu
,
Z.
,
Feng
,
X.
,
O'Kane
,
S.
,
Liu
,
X.
,
Chen
,
J.
, and
Ji
,
C.
,
2019
, “
Lithium-Ion Battery Fast Charging: A Review
,”
eTransportation
,
1
, p.
100011
.10.1016/j.etran.2019.100011
11.
Annapragada
,
S. R.
,
MacDonald
,
M.
,
Sur
,
A.
,
Mahmoudi
,
R.
, and
Lents
,
C.
,
2018
, “
Hybrid Electric Aircraft Battery Heat Acquisition System
,”
AIAA
Paper No. 2018-4992.10.2514/6.2018-4992
12.
McCluskey
,
F. P.
,
Saadon
,
Y.
,
Yao
,
Z.
,
Shah
,
J.
, and
Kizito
,
J. P.
,
2018
, “
Thermal Management Challenges in Turbo-Electric and Hybrid Electric Propulsion
,”
AIAA
Paper No. 2018-4695.10.2514/6.2018-4695
13.
Simon
,
D. L.
,
Connolly
,
J. W.
, and
Culley
,
D.
,
2019
, “
Control Technology Needs for Electrified Aircraft Propulsion Systems
,”
ASME
Paper No. GT2019-91413.10.1115/GT2019-91413
14.
Sahoo
,
S.
,
Zhao
,
X.
,
Kyprianidis
,
K. G.
, and
Kalfas
,
A.
,
2019
, “
Performance Assessment of an Integrated Parallel Hybrid-Electric Propulsion System Aircraft
,”
ASME
Paper No. GT2019-91459.10.1115/GT2019-91459
15.
Wortmann
,
G.
,
Schmitz
,
O.
, and
Hornung
,
M.
,
2014
, “
Comparative Assessment of Transient Characteristics of Conventional and Hybrid Gas Turbine Engine
,”
CEAS Aeronaut. J.
,
5
(
2
), pp.
209
223
.10.1007/s13272-014-0101-8
16.
NASA Technology Transfer Program, 2021, “Flight Optimization System (FLOPS) Software v.9,” Langley Research Center, Hampton, VA, accessed Apr. 25, 2020, https://software.nasa.gov/software/LAR-18934-1
17.
Lammen
,
W.
, and
Vankan
,
J.
,
2020
, “
Energy Optimization of Single Aisle Aircraft With Hybrid Electric Propulsion
,”
AIAA
Paper No. 2020-0505.10.2514/6.2020-0505
18.
Hoogreef
,
M.
,
Vos
,
R.
,
de Vries
,
R.
, and
Veldhuis
,
L. L.
,
2019
, “
Conceptual Assessment of Hybrid Electric Aircraft With Distributed Propulsion and Boosted Turbofans
,”
AIAA
Paper No. 2019-1807.10.2514/6.2019-1807
19.
Roumeliotis
,
I.
,
Nikolaidis
,
T.
,
Pachidis
,
V.
,
Broca
,
O.
, and
Unlu
,
D.
,
2018
, “
Dynamic Simulation of a Rotorcraft Hybrid Engine in Amesim
,”
44th European Rotorcraft Forum
, Delft, The Netherlands, Sept. 19–20, pp.
696
709
.https://www.semanticscholar.org/paper/Dynamic-simulation-of-a-rotorcraft-hybrid-engine-in-Roumeliotis-Nikolaidis/8b399ecb7761e9bd1120b8774aeb7e0abee3070b
20.
Frosina
,
E.
,
Senatore
,
A.
,
Palumbo
,
L.
,
Di Lorenzo
,
G.
, and
Pascarella
,
C.
,
2018
, “
Development of a Lumped Parameter Model for an Aeronautic Hybrid Electric Propulsion System
,”
Aerospace
,
5
(
4
), p.
105
.10.3390/aerospace5040105
21.
Hangiu
,
R. P.
,
Filip
,
A. T.
,
Martis
,
C. S.
, and
Biró
,
K. Á.
,
2012
, “
System-Level Modeling and Simulation of a Permanent Magnet Synchronous Motor for an Integrated Starter Alternator
,”
J. Electr. Electron. Eng.
,
5
(
2
), pp.
67
70
.https://www.researchgate.net/publication/291764378_Systemlevel_Modeling_and_Simulation_of_a_Permanent_Magnet_Synchronous_Motor_for_an_Integrated_Starter_Alternator
22.
Pagonis
,
M.
,
2015
, “
Electrical Power Aspects of Distributed Propulsion Systems in Turbo-Electric Powered Aircraft
,” Ph.D. thesis,
Cranfield University, Bedfordshire
, UK.
23.
MacDonald
,
A. R.
,
2013
, “
Electric Propulsion Modeling for Conceptual Aircraft Design
,”
AIAA
Paper No. 2014-0536.10.2514/6.2014-0536
24.
Bradley
,
K. M.
, and
Droney
,
K. C.
,
2015
, “
Subsonic Ultra Green Aircraft Research: Phase II—Volume II—Hybrid Electric Design Exploration
,” NASA, Washington, DC, accessed Aug. 5, 2020, https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150017039.pdf
25.
Sahoo
,
S.
,
Zhao
,
X.
, and
Kyprianidis
,
K.
,
2020
, “
A Review of Concepts, Benefits, and Challenges for Future Electrical Propulsion-Based Aircraft
,”
Aerospace
,
7
(
4
), p.
44
.10.3390/aerospace7040044
26.
Siemens Industry Software, 2019, “
Siemens PLM Software Simcenter
,” Siemens Industry Software, Plano, TX, accessed Dec. 12, 2019, https://www.plm.automation.siemens.com/global/en/products/simcenter/
27.
Roumeliotis
,
I.
,
Castro
,
L.
,
Jafari
,
S.
,
Pachidis
,
V.
,
De Riberolles
,
L.
,
Broca
,
O.
, and
Unlu
,
D.
,
2021
, “
Integrated Systems Simulation for Assessing Fuel Thermal Management Capabilities for Hybrid-Electric Rotorcraft
,”
ASME
Paper No. GT2020-15107.10.1115/GT2020-15107
28.
Gaudet
,
S. R.
, and
Gauthier
,
J. E. D.
,
2007
, “
A Simple Sub-Idle Component Map Extrapolation Method
,”
ASME
Paper No. GT2007-27193.10.1115/GT2007-27193
29.
Martins
,
D. A. R.
,
2015
, “
Off-Design Performance Prediction of the CFM56-3 Aircraft Engine
,” M.Sc. thesis,
Tecnico Lisboa
, Lisbon, Portugal.
30.
Lolis
,
P.
,
2014
, “
Development of a Novel Preliminary Aero Engine Weight Estimation Method
,” Ph.D. thesis,
Propulsion Engineering Centre, Cranfield University, Bedfordshire
, UK.
31.
Gunston
,
B.
, ed.,
2004
,
Jane's Aero-Engines
,
Jane's Information Group Limited
, Coulsdon, UK.
32.
Pera
,
R. J.
,
Onat
,
E.
,
Klees
,
G. W.
, and
Tjonneland
,
E.
,
1977
, “
A Method to Estimate Weight and Dimensions of Aircraft Gas Turbine Engines—Final Report Vol. 2—User's Manual
,” NASA, Seattle, WA, Report No. NASA-CR135170.
33.
Norman
,
P. D.
,
Lister
,
D. H.
,
Lecht
,
M.
,
Madden
,
P.
,
Park
,
K.
,
Penanhoat
,
O.
,
Plaisance
,
C.
, and
Renger
,
K.
,
2003
, “
Development of the Technical Basis for a New Emissions Parameter Covering the Whole Aircraft Operation: NEPAIR
,” European Commission, Luxembourg City, Luxembourg, Final Technical Report No. NEPAIR/WP4/WPR/01.
34.
ICAO
,
2019
, “
ICAO Aircraft Engine Emissions Databank
,” ICAO, Montréal, QC, Canada, accessed Apr. 25, 2020, https://www.easa.europa.eu/domains/environment/icao-aircraft-engine-emissions-databank
35.
Lents
,
C. E.
,
Hardin
,
L. W.
,
Rheaume
,
J.
, and
Kohlman
,
L.
,
2016
, “
Parallel Hybrid Gas-Electric Geared Turbofan Engine Conceptual Design and Benefits Analysis
,”
AIAA
Paper No. 2016-4610.10.2514/6.2016-4610
36.
Masson
,
P. J.
,
Pienkos
,
J. E.
, and
Luongo
,
C. A.
,
2007
, “
Scaling Up of HTS Motor Based on Trapped Flux and Flux Concentration for Large Aircraft Propulsion
,”
IEEE Trans. Appl. Supercond.
,
17
(
2
), pp.
1579
1582
.10.1109/TASC.2007.898111
37.
Agarwal
,
R.
, and
Zhang
,
Z.
,
2011
, “
Optimization of ETRW (Energy Liberated During a Flight/Revenue Work Done) of an Airplane for Minimizing Its Environmental Impact
,”
SAE
Technical Paper No. 2011-01-2524.10.4271/2011-01-2524
You do not currently have access to this content.