Abstract

Solar energy is considered one of the most affordable renewable resources for meeting current energy demands and mitigating environmental problems. However, the exploitation of solar energy is challenging because of both diurnal and seasonal variations. Power-to-hydrogen technologies can play a key role to counterbalance the variation of solar irradiance. Moreover, hydrogen-fueled gas turbines are considered promising technologies to decarbonize the electricity sector. To tackle these concerns, this paper presents a multigeneration energy system operated in island mode in which a hydrogen-fueled gas turbine is coupled with a solar photovoltaic plant, an electrolyzer, an absorption chiller, electric and thermal energy storage, as well as a hydrogen storage. Therefore, the energy system is 100% based on renewable energy. The sizes of the components are optimized by maximizing the exploitation of renewable energy sources, while the supply of electricity from the national grid must be null. Moreover, the effect of ambient conditions on the optimal sizing is also investigated by considering the thermal, cooling, and electrical energy demands of two case studies located in two different climatic zones. The paper demonstrates that the adoption of hydrogen-fueled gas turbines coupled with power-to-hydrogen technologies can effectively support the transition toward a clean energy supply. Moreover, this study provides a procedure for the optimal sizing of a multigeneration energy system fully based on solar energy, by also demonstrating that both photovoltaic (PV) panel area and hydrogen storage volume are feasible, if compared to the considered district layout.

References

1.
Luz
,
T.
, and
Moura
,
P.
,
2019
, “
100% Renewable Energy Planning With Complementarity and Flexibility Based on a Multi-Objective Assessment
,”
Appl. Energy
,
255
, p.
113819
.10.1016/j.apenergy.2019.113819
3.
Thellufsen
,
J. Z.
,
Lund
,
H.
,
Sorknæs
,
P.
,
Østergaard
,
P. A.
,
Chang
,
M.
,
Drysdale
,
D.
,
Nielsen
,
S.
,
Djørup
,
S. R.
, and
Sperling
,
K.
,
2020
, “
Smart Energy Cities in a 100% Renewable Energy Context, Renew
,”
Sust. Energ. Rev.
,
129
, p.
109922
.10.1016/j.rser.2020.109922
4.
Muellejans
,
H.
,
Zaaiman
,
W.
,
Galleano
,
R.
,
Pavanello
,
D.
,
Salis
,
E.
,
Sample
,
T.
,
Bardizza
,
G.
,
Lopez Garcia
,
J.
,
Kenny
,
R.
,
Shaw
,
D.
,
Field
,
M.
,
Castellazzi
,
L.
, and
Dunlop
,
E.
,
2020
, “
State-of-the-Art for Assessment of Solar Energy Technologies 2019
,” EUR 30124 EN, JRC118667, Publications Office of the European Union, Luxembourg.https://publications.jrc.ec.europa.eu/repository/handle/JRC118667
5.
Hirvonen
,
J.
,
Kayo
,
G.
,
Hasan
,
A.
, and
Sirén
,
K.
,
2016
, “
Zero Energy Level and Economic Potential of Small-Scale Building-Integrated PV With Different Heating Systems in Nordic Conditions
,”
Appl. Energy
,
167
, pp.
255
269
.10.1016/j.apenergy.2015.12.037
6.
Saboori
,
H.
,
Hemmati
,
R.
,
Ghiasi
,
S. M. S.
, and
Dehghan
,
S.
,
2017
, “
Energy Storage Planning in Electric Power Distribution Networks – a State-of-the-Art Review
,”
Renewable Sustainable Energy Rev.
,
79
, pp.
1108
1121
.10.1016/j.rser.2017.05.171
7.
Van der Kam
,
M.
, and
Van Sark
,
W.
,
2015
, “
Smart Charging of Electric Vehicles With Photovoltaic Power and Vehicle-to-Grid Technology in a Microgrid; a Case Study
,”
Appl. Energy
,
152
, pp.
20
30
.10.1016/j.apenergy.2015.04.092
8.
Schiebahn
,
S.
,
Grube
,
T.
,
Robinius
,
M.
,
Tietze
,
V.
,
Kumar
,
B.
, and
Stolten
,
D.
,
2015
, “
Power to Gas: Technological Overview, Systems Analysis and Economic Assessment for a Case Study in Germany
,”
Int. J. Hydrogen
,
40
(
12
), pp.
4285
4294
.10.1016/j.ijhydene.2015.01.123
9.
Welder
,
L.
,
Ryberg
,
D. S.
,
Kotzur
,
L.
,
Grube
,
T.
,
Robinius
,
M.
, and
Stolten
,
D.
,
2018
, “
Spatio-Temporal Optimization of a Future Energy System for Power-to-Hydrogen Applications in Germany
,”
Energy
,
158
, pp.
1130
1149
.10.1016/j.energy.2018.05.059
10.
Buttler
,
A.
, and
Spliethoff
,
H.
,
2018
, “
Current Status of Water Electrolysis for Energy Storage, Grid Balancing and Sector Coupling Via Power-to-Gas and Power-to-Liquids: A Review
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
2440
2454
.10.1016/j.rser.2017.09.003
11.
Götz
,
M.
,
Lefebvre
,
J.
,
Mörs
,
F.
,
McDaniel Koch
,
A.
,
Graf
,
F.
,
Bajohr
,
S.
,
Reimert
,
R.
, and
Kolb
,
T.
,
2016
, “
Renewable Power-to-Gas: A Technological and Economic Review
,”
Renewable Energy
,
85
, pp.
1371
1390
.10.1016/j.renene.2015.07.066
12.
International Energy Agency (IEA),
2019
, “The future of hydrogen,” International Energy Agency, Paris, France, accessed Dec. 22, 2021, https://www.iea.org/reports/the-future-of-hydrogen
13.
Kruck
,
O.
,
Crotogino
,
F.
,
Prelicz
,
R.
, and
Rudolph
,
T.
,
2013
, “Overview on All Known Underground Storage Technologies for Hydrogen,” HyUnder, Huesca, Spain.
14.
Welder
,
L.
,
Stenzel
,
P.
,
Ebersbach
,
N.
,
Markewitz
,
P.
,
Robinius
,
M.
,
Emonts
,
B.
, and
Stolten
,
D.
,
2019
, “
Design and Evaluation of Hydrogen Electricity Reconversion Pathways in National Energy Systems Using Spatially and Temporally Resolved Energy System Optimization
,”
Int. J. Hydrogen
,
44
(
19
), pp.
9594
9607
.10.1016/j.ijhydene.2018.11.194
15.
Cocchi
,
S.
, and
Sigali
,
S. G.
, “
Development of a Low-NOX Hydrogen-Fuelled Combustor for 10 MW Class Gas Turbines
,”
ASME
Paper No. GT2010-23348.10.1115/GT2010-23348
16.
Abo-Elyousr
,
F. K.
,
Guerrero
,
J. M.
, and
Ramadan
,
H. S.
,
2021
, “
Prospective Hydrogen-Based Microgrid Systems for Optimal Leverage Via Metaheuristic Approaches
,”
Appl. Energy
,
300
, p.
117384
.10.1016/j.apenergy.2021.117384
17.
Zhou
,
J.
,
Wu
,
Y.
,
Zhong
,
Z.
,
Xu
,
C.
,
Ke
,
Y.
, and
Gao
,
J.
,
2021
, “
Modeling and Configuration Optimization of the Natural Gas-Wind-Photovoltaic-Hydrogen Integrated Energy System: A Novel Deviation Satisfaction Strategy
,”
Energy Convers. Manag
,
243
, p.
114340
.10.1016/j.enconman.2021.114340
18.
Mathiesen
,
B. V.
,
Lund
,
H.
,
Connolly
,
D.
,
Wenzel
,
H.
,
Ostergaard
,
P. A.
,
Möller
,
B.
,
Nielsen
,
S.
,
Ridjan
,
I.
,
KarnOe
,
P.
,
Sperling
,
K.
, and
Hvelplund
,
F. K.
,
2015
, “
Smart Energy Systems for Coherent 100% Renewable Energy and Transport Solutions
,”
Appl. Energy
,
145
, pp.
139
154
.10.1016/j.apenergy.2015.01.075
19.
Samsatli
,
S.
, and
Samsatli
,
N. J.
,
2019
, “
The Role of Renewable Hydrogen and Inter-Seasonal Storage in Decarbonising Heat – Comprehensive Optimisation of Future Renewable Energy Value Chains
,”
Appl. Energy
,
233–234
, pp.
854
893
.10.1016/j.apenergy.2018.09.159
20.
Petkov
,
I.
, and
Gabrielli
,
P.
,
2020
, “
Power-to-Hydrogen as Seasonal Energy Storage: An Uncertainty Analysis for Optimal Design of Low-Carbon Multi-Energy Systems
,”
Appl. Energy
,
274
, p.
115197
.10.1016/j.apenergy.2020.115197
21.
Guandalini
,
G.
,
Robinius
,
M.
,
Grube
,
T.
,
Campanari
,
S.
, and
Stolten
,
D.
,
2017
, “
Long-Term Power-to-Gas Potential From Wind and Solar Power: A Country Analysis for Italy
,”
Int. J. Hydrogen
,
42
(
19
), pp.
13389
13406
.10.1016/j.ijhydene.2017.03.081
22.
Brey
,
J. J.
,
2021
, “
Use of Hydrogen as a Seasonal Energy Storage System to Manage Renewable Power Deployment in Spain by 2030
,”
Int. J. Hydrogen
,
46
(
33
), pp.
17447
17457
.10.1016/j.ijhydene.2020.04.089
23.
Öberg
,
S.
,
Odenberger
,
M.
, and
Johnsson
,
F.
,
2022
, “
Exploring the Competitiveness of Hydrogen-Fueled Gas Turbines in Future Energy Systems
,”
Int. J. Hydrogen
, 47(1), pp. 624–644.10.1016/j.ijhydene.2021.10.035
24.
Jacobson
,
M. Z.
, and
Jadhav
,
V.
,
2018
, “
World Estimates of PV Optimal Tilt Angles and Ratios of Sunlight Incident Upon Tilted and Tracked PV Panels Relative to Horizontal Panels
,”
Sol. Energy
,
169
, pp.
55
66
.10.1016/j.solener.2018.04.030
25.
Kreith
,
F.
, and
Goswami
,
D. Y.
,
2007
,
Handbook of Energy Efficiency and Renewable Energy
,
CRC Press
, Boca Raton, FL.
26.
Farmer
,
R.
,
deBiasi
,
B.
, and
Isles
,
J.
,
2007
,
Gas Turbine World Handbook
, Vol.
26
,
Pequot Publishing Inc
.,
Fairfield, CT
.
27.
Bahlawan
,
H.
,
Gambarotta
,
A.
,
Losi
,
E.
,
Manservigi
,
L.
,
Morini
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2021
, “
Sizing and Operation of a Hybrid Energy Plant Composed of Industrial Gas Turbines, Renewable Energy Systems and Energy Storage Technologies
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061013
.10.1115/1.4049652
28.
Systemair
, 2021, “SYSCROLL 240-260 AIR, Air Cooled Water Chillers Cooling Only, Heat Pump and Total Heat Recovery Engineering Data Manual,” Systemair srl, Barlassina Italy, accessed Dec. 22, 2021, https://shop.systemair.com/upload/assets/EDM_SYSCROLL_240-660_AIR-S-9GB.PDF?cd1c9d39
29.
Dincer
,
I.
, and
Alzahrani
,
A. A.
,
2018
, “
Comprehensive Energy Systems
,” 1st ed.,
4–5
, pp.
985
1025
.https://www.elsevier.com/books/comprehensive-energy-systems/dincer/978-0-12-809597-3
30.
Elberry
,
A. M.
,
Thakur
,
J.
,
Santasalo-Aarnio
,
A.
, and
Larmi
,
M.
,
2021
, “
Large-Scale Compressed Hydrogen Storage as Part of Renewable Electricity Storage Systems
,”
Int. J. Hydrogen
,
46
(
29
), pp.
15671
15690
.10.1016/j.ijhydene.2021.02.080
31.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of ICNN'95 - International Conference on Neural Networks
, Perth, WA, Australia, Nov. 27–Dec. 1, pp.
1942
1948
.
32.
Barbieri
,
E. S.
,
Dai
,
Y. J.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Sun
,
P.
, and
Wang
,
R. Z.
,
2014
, “
Optimal Sizing of a Multi-Source Energy Plant for Power Heat and Cooling Generation
,”
Appl. Therm. Eng.
,
71
(
2
), pp.
736
750
.10.1016/j.applthermaleng.2013.11.022
33.
Taylor
,
N.
, and
Jäger-Waldau
,
A.
, “Photovoltaics Technology Development Report 2020,” EUR 30504 EN, Publications Office of the European Union, Luxembourg.
34.
LG, 2015, “LG HVAC Solution Absorption Chiller
,” LG, Seoul, Korea, accessed Dec. 22, 2021, https://www.lg.com/global/business/download/resources/sac/Catalogue_Absorption%20Chillers_ENG_F.pdf
35.
National Research Council and National Academy of Engineering,
2004
,
The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs
,
The National Academies Press
,
Washington, DC
.
36.
GEL, 2012, “Green Energy Laboratory, Research Center,” GEL, Firenze, Italy, accessed Dec. 22, 2021, https://www.archea.it/en/progetto/gel-green-energy-laboratory/
37.
H2 Green Tech, 2020, European Commission, “A Hydrogen Strategy for a Climate-Neutral Europe,” Brussels, 8.7.2020, COM(2020) 301 Final.
You do not currently have access to this content.