Abstract

A novel boundary layer flashback model is developed based on previous measurements that showed flashback limits may be related to strained premixed flame extinction. According to the model, flashback occurs at the equivalence ratio where the strained extinction limit flame speed matches the mean axial flow velocity one thermal distance from the wall. The model is validated by comparison with experimental measurements of flashback of confined nonswirling turbulent hydrogen-air flames. This comparison shows that the proposed model is capable of predicting confined turbulent boundary layer flashback across a large range of wall velocity gradients and preheat temperatures. The model is extended to methane-hydrogen-air flames in a swirling configuration using information about a single flashback event and shows good agreement with experimental measurements as a function of both hydrogen mole fraction in the fuel and pressure. In addition, inclusion of a mean nonreacting velocity field computed via large Eddy simulation allows for a significant increase in the accuracy of the model when applied to swirling flows. Ultimately, this model provides a new pathway for the design of flashback resistant gas turbines, even with the addition of fuels like hydrogen.

References

1.
Kalantari
,
A.
, and
McDonell
,
V.
,
2017
, “
Boundary Layer Flashback of Non-Swirling Premixed Flames: Mechanisms, Fundamental Research, and Recent Advances
,”
Prog. Energy Combust. Sci.
,
61
, pp.
249
292
.10.1016/j.pecs.2017.03.001
2.
Ebi
,
D.
, and
Clemens
,
N. T.
,
2016
, “
Experimental Investigation of Upstream Flame Propagation During Boundary Layer Flashback of Swirl Flames
,”
Combust. Flame
,
168
, pp.
39
52
.10.1016/j.combustflame.2016.03.027
3.
Eichler
,
C.
,
Baumgartner
,
G.
, and
Sattelmayer
,
T.
,
2011
, “
Experimental Investigation of Turbulent Boundary Layer Flashback Limits for Premixed Hydrogen-Air Flames Confined in Ducts
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
011502
.10.1115/1.4004149
4.
Law
,
C. K.
,
2006
,
Combustion Physics
,
Cambridge University Press
, Cambridge, UK.
5.
Duan
,
Z.
,
Shaffer
,
B.
,
McDonell
,
V.
,
Baumgartner
,
G.
, and
Sattelmayer
,
T.
,
2013
, “
Influence of Burner Material, Tip Temperature, and Geometrical Flame Configuration on Flashback Propensity of H2-Air Jet Flames
,”
ASME J. Eng. Gas Turbines Power
,
136
(
2
), p.
021502
.10.1115/1.4025359
6.
Schneider
,
C. E.
, and
Steinberg
,
A. M.
,
2020
, “
Statistics and Dynamics of Intermittent Boundary Layer Flashback in Swirl Flames
,”
J. Propul. Power
,
36
(
6
), pp.
940
949
.10.2514/1.B37815
7.
Eichler
,
C.
,
2011
, “
Flame Flashback in Wall Boundary Layers of Premixed Combustion Systems
,” Ph.D. thesis,
Technische Universität München
, Munich, Germany.
8.
Eichler
,
C.
, and
Sattelmayer
,
T.
,
2012
, “
Premixed Flame Flashback in Wall Boundary Layers Studied by Long-Distance micro-PIV
,”
Exp. Fluids
,
52
(
2
), pp.
347
360
.10.1007/s00348-011-1226-8
9.
Ebi
,
D.
,
Bombach
,
R.
, and
Jansohn
,
P.
,
2021
, “
Swirl Flame Boundary Layer Flashback at Elevated Pressure: Modes of Propagation and Effect of Hydrogen Addition
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6345
6353
.10.1016/j.proci.2020.06.305
10.
Gruber
,
A.
,
Chen
,
J. H.
,
Valiev
,
D.
, and
Law
,
C. K.
,
2012
, “
Direct Numerical Simulation of Premixed Flame Boundary Layer Flashback in Turbulent Channel Flow
,”
J. Fluid Mech.
,
709
, pp.
516
542
.10.1017/jfm.2012.345
11.
Endres
,
A.
, and
Sattelmayer
,
T.
,
2019
, “
Numerical Investigation of Pressure Influence on the Confined Turbulent Boundary Layer Flashback Process
,”
Fluids
,
4
(
3
), p.
146
.10.3390/fluids4030146
12.
Lewis
,
B.
, and
von Elbe
,
G.
,
1943
, “
Stability and Structure of Burner Flames
,”
J. Chem. Phys.
,
11
(
2
), pp.
75
97
.10.1063/1.1723808
13.
Heeger
,
C.
,
Gordon
,
R. L.
,
Tummers
,
M. J.
,
Sattelmayer
,
T.
, and
Dreizler
,
A.
,
2010
, “
Experimental Analysis of Flashback in Lean Premixed Swirling Flames: Upstream Flame Propagation
,”
Exp. Fluids
,
49
(
4
), pp.
853
863
.10.1007/s00348-010-0886-0
14.
Hoferichter
,
V.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2016
, “
Prediction of Confined Flame Flashback Limits Using Boundary Layer Separation Theory
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
021505
.10.1115/1.4034237
15.
Björnsson
,
Ó. H.
,
Klein
,
S. A.
, and
Tober
,
J.
,
2021
, “
Boundary Layer Flashback Model for Hydrogen Flames in Confined Geometries Including the Effect of Adverse Pressure Gradient
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061003
.10.1115/1.4048566
16.
Goodwin
,
D. G.
,
Speth
,
R. L.
,
Moffat
,
H. K.
, and
Weber
,
B. W.
,
2021
, “Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes," Cantera, Version 2.5.1, accessed Sept. 8, 2022, https://www.cantera.org
17.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
, and
Dryer
,
F. L.
,
2004
, “
An Updated Comprehensive Kinetic Model of Hydrogen Combustion
,”
Int. J. Chem. Kinet.
,
36
(
10
), pp.
566
575
.10.1002/kin.20026
18.
University of California at San Diego,
2016
, “
Chemical-Kinetic Mechanisms for Combustion Applications
,” San Diego Mechanism Web Page, Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego, San Diego, CA, accessed Sept. 8, 2022, https://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html
19.
Ebi
,
D.
, and
Jansohn
,
P.
,
2021
, “
Boundary Layer Flashback Limits of Hydrogen-Methane-Air Flames in a Generic Swirl Burner at Gas Turbine-Relevant Conditions
,”
ASME J. Eng. Gas Turbine Power
,
143
(
8
), p.
081011
.10.1115/1.4049777
20.
Gicquel
,
L. Y. M.
,
Gourdain
,
N.
,
Boussuge
,
J. F.
,
Deniau
,
H.
,
Staffelbach
,
G.
,
Wolf
,
P.
, and
Poinsot
,
T.
,
2011
, “
High Performance Parallel Computing of Flows in Complex Geometries
,”
C. R. Méc.
,
339
(
2–3
), pp.
104
124
.10.1016/j.crme.2010.11.006
21.
Colin
,
O.
, and
Rudgyard
,
M.
,
2000
, “
Development of High-Order Taylor-Galerkin Schemes for LES
,”
J. Comput. Phys.
,
162
(
2
), pp.
338
371
.10.1006/jcph.2000.6538
22.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids
,
3
(
7
), pp.
1760
1765
.10.1063/1.857955
23.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.10.1063/1.870436
24.
Van Driest
,
E. R.
,
1951
, “
Turbulent Boundary Layer in Compressible Fluids
,”
J. Aero. Sci.
,
18
(
3
), pp.
145
160
.10.2514/8.1895
25.
Law
,
C.
,
1989
, “
Dynamics of Stretched Flames
,”
Symp. (Int.) Combust.
,
22
(
1
), pp.
1381
1402
.10.1016/S0082-0784(89)80149-3
26.
Salusbury
,
S. D.
, and
Bergthorson
,
J. M.
,
2015
, “
Maximum Stretched Flame Speeds of Laminar Premixed Counter-Flow Flames at Variable Lewis Number
,”
Combust. Flame
,
162
(
9
), pp.
3324
3332
.10.1016/j.combustflame.2015.05.023
27.
Law
,
C.
,
Zhu
,
D.
, and
Yu
,
G.
,
1988
, “
Propagation and Extinction of Stretched Premixed Flames
,”
Symp. (Int.) Combust.
,
21
(
1
), pp.
1419
1426
.10.1016/S0082-0784(88)80374-6
28.
Spalding
,
D. B.
,
1961
, “
A Single Formula for the ‘Law of the Wall
,”
ASME J. Appl. Mech.
,
28
(
3
), pp.
455
458
.10.1115/1.3641728
29.
Kurdyumov
,
V.
,
Fernández
,
E.
, and
Liñán
,
A.
,
2000
, “
Flame Flashback and Propagation of Premixed Flames Near a Wall
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
1883
1889
.10.1016/S0082-0784(00)80592-5
30.
Pope
,
S.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
31.
Kido
,
H.
,
Nakahara
,
M.
,
Nakashima
,
K.
, and
Hashimoto
,
J.
,
2002
, “
Influence of Local Flame Displacement Velocity on Turbulent Burning Velocity
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
1855
1861
.10.1016/S1540-7489(02)80225-5
32.
Lee
,
H.
,
Dai
,
P.
,
Wan
,
M.
, and
Lipatnikov
,
A.
,
2021
, “
Influence of Molecular Transport on Burning Rate and Conditioned Species Concentrations in Highly Turbulent Premixed Flames
,”
J. Fluid Mech.
,
928
, p.
A5
.10.1017/jfm.2021.794
33.
Rieth
,
M.
,
Gruber
,
A.
,
Williams
,
F. A.
, and
Chen
,
J. H.
,
2022
, “
Enhanced Burning Rates in Hydrogen-Enriched Turbulent Premixed Flames by Diffusion of Molecular and Atomic Hydrogen
,”
Combust. Flame
,
239
, p.
111740
.10.1016/j.combustflame.2021.111740
34.
Berger
,
L.
,
Attili
,
A.
, and
Pitsch
,
H.
,
2022
, “
Intrinsic Instabilities in Premixed Hydrogen Flames: Parametric Variation of Pressure, Equivalence Ratio, and Temperature. part 2-Non-Linear Regime and Flame Speed Enhancement
,”
Combust. Flame
,
240
, p.
111936
.10.1016/j.combustflame.2021.111936
35.
Lee
,
H.
,
Abdelsamie
,
A.
,
Dai
,
P.
,
Wan
,
M.
, and
Lipatnikov
,
A. N.
,
2022
, “
Influence of Equivalence Ratio on Turbulent Burning Velocity and Extreme Fuel Consumption Rate in Lean Hydrogen-Air Turbulent Flames
,”
Fuel
,
327
, p.
124969
.10.1016/j.fuel.2022.124969
You do not currently have access to this content.