Abstract

Pilot flames are commonly used to extend combustor operability limits and suppress combustion oscillations in low-emissions gas turbines. Combustion oscillations, a coupling between heat release rate oscillations and combustor acoustics, can arise at the operability limits of low-emissions combustors where the flame is more susceptible to perturbations. While the use of pilot flames is common in land-based gas turbine combustors, the mechanism by which they suppress instability is still unclear. In this study, we consider the impact of a central jet pilot on the stability of a swirl-stabilized flame in a variable-length, single-nozzle combustor. Previously, the pilot flame was found to suppress the instability for a range of equivalence ratios and combustor lengths. We hypothesize that combustion oscillation suppression by the pilot occurs because the pilot provides hot gases to the vortex breakdown region of the flow that recirculate and improve the static, and hence dynamic, stability of the main flame. This hypothesis is based on a series of experimental results that show that pilot efficacy is a strong function of pilot equivalence ratio but not pilot flow rate, which would indicate that the temperature of the pilot products as well as the combustion intensity of the pilot flame play more of a role in oscillation stabilization than the length of the pilot flame relative to the main flame. Further, the pilot-flame efficacy increases with pilot-flame equivalence ratio until it matches the main-flame equivalence ratio; at pilot equivalence ratios greater than the main equivalence ratio, the pilot-flame efficacy does not change significantly with pilot equivalence ratio. To understand these results, we use large-eddy simulation (LES) to provide a detailed analysis of the flow in the region of the pilot flame and the transport of radical species in the region between the main flame and pilot flame. The simulation, using a flamelet/progress variable-based chemistry tabulation approach and standard eddy viscosity/diffusivity turbulence closure models, provides detailed information that is inaccessible through experimental measurements.

References

1.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
2.
McDonell
,
V.
,
2016
, “
Lean Combustion in Gas Turbines
,”
Lean Combustion
,
D.
Dunn-Rankin
and
P.
Therkelsen
, eds.,
Academic Press
,
London
, UK, pp.
147
201
.
3.
McManus
,
K. R.
,
Poinsot
,
T.
, and
Candel
,
S. M.
,
1993
, “
A Review of Active Control of Combustion Instabilities
,”
Prog. Energy Combust. Sci.
,
19
(
1
), pp.
1
29
.10.1016/0360-1285(93)90020-F
4.
Annaswamy
,
A. M.
, and
Ghoniem
,
A. F.
,
2002
, “
Active Control of Combustion Instability: Theory and Practice
,”
IEEE Control Syst. Mag.
,
22
(
6
), pp.
37
54
.10.1109/MCS.2002.1077784
5.
Zinn
,
B. T.
, and
Lieuwen
,
T. C.
,
2005
, “
Combustion Instabilities: Basic Concepts
,”
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
,
T. C.
Lieuwen
and
V.
Yang
, eds.,
American Institute of Aeronautics and Astronautics
,
Reston, VA
, pp.
3
26
.10.2514/4.866807
6.
Scarinci
,
T.
,
Freeman
,
C.
, and
Day
,
I.
,
2004
, “
Passive Control of Combustion Instability in a Low Emissions Aeroderivative Gas Turbine
,”
ASME
Paper No. GT2004-53767.10.1115/GT2004-53767
7.
Richards
,
G. A.
,
Straub
,
D. L.
, and
Robey
,
E. H.
,
2003
, “
Passive Control of Combustion Dynamics in Stationary Gas Turbines
,”
J. Propul. Power
,
19
(
5
), pp.
795
810
.10.2514/2.6195
8.
Albrecht
,
P.
,
Bade
,
S.
,
Lacarelle
,
A.
,
Paschereit
,
C. O.
, and
Gutmark
,
E.
,
2010
, “
Instability Control by Premixed Pilot Flames
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
041501
.10.1115/1.3019293
9.
Seume
,
J. R.
,
Vortmeyer
,
N.
,
Krause
,
W.
,
Hermann
,
J.
,
Hantschk
,
C.-C.
,
Zangl
,
P.
,
Gleis
,
S.
,
Vortmeyer
,
D.
, and
Orthmann
,
A.
,
1998
, “
Application of Active Combustion Instability Control to a Heavy Duty Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
120
(
4
), pp.
721
726
.10.1115/1.2818459
10.
Li
,
C.
,
Li
,
S.
,
Cheng
,
X.
, and
Zhu
,
M.
,
2018
, “
Measurements and Modeling of the Dynamic Response of a Pilot Stabilized Premixed Flame Under Dual-Input Perturbation
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
121502
.10.1115/1.4040175
11.
Oztarlik
,
G.
,
Selle
,
L.
,
Poinsot
,
T.
, and
Schuller
,
T.
,
2020
, “
Suppression of Instabilities of Swirled Premixed Flames With Minimal Secondary Hydrogen Injection
,”
Combust. Flame
,
214
, pp.
266
276
.10.1016/j.combustflame.2019.12.032
12.
Davis
,
L. B.
,
1996
, “
Dry Low NOx Combustion Systems for GE Heavy-Duty Gas Turbines
,”
ASME
Paper No. 96-GT-027
.10.1115/96-GT-027
13.
Subash
,
A. A.
,
Collin
,
R.
,
Aldén
,
M.
,
Kundu
,
A.
, and
Klingmann
,
J.
,
2017
, “
Experimental Investigation of the Influence of Burner Geometry on Flame Characteristics at a Dry Low Emission Industrial Prototype Burner at Atmospheric Pressure Conditions
,”
ASME
Paper No. GT2017-63950.10.1115/GT2017-63950
14.
Smith
,
K. O.
,
Rawlins
,
D. C.
, and
Steele
,
R. C.
,
2000
, “
Developments in Dry Low Emissions Systems
,”
ASME
Paper No. IPC2000-267.10.1115/IPC2000-267
15.
Albrecht
,
P.
,
Speck
,
S.
,
Schimek
,
S.
,
Bauermeister
,
F.
,
Gutmark
,
E.
, and
Paschereit
,
O.
,
2007
, “
Lean Blowout Control Using an Auxiliary Premixed Flame in a Swirl-Stabilized Combustor
,”
AIAA
Paper No. 2007-5632.10.2514/6.2007-5632
16.
Shanbhogue
,
S.
,
Shin
,
D.-H.
,
Hemchandra
,
S.
,
Plaks
,
D.
, and
Lieuwen
,
T.
,
2009
, “
Flame-Sheet Dynamics of Bluff-Body Stabilized Flames During Longitudinal Acoustic Forcing
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
1787
1794
.10.1016/j.proci.2008.06.034
17.
De
,
S.
,
Mondal
,
P.
,
Sardar
,
G. M.
,
Bokhtiar
,
R. B.
,
Bhattacharya
,
A.
,
Mukhopadhyay
,
A.
, and
Sen
,
S.
,
2019
, “
Control of Lean Blowout in Partially Premixed Swirl-Stabilized Combustor Using a Fuel Rich Central Pilot Configuration
,”
ASME
Paper No. GTINDIA2019-2478.10.1115/GTINDIA2019-2478
18.
Subash
,
A. A.
,
Collin
,
R.
,
Aldén
,
M.
,
Kundu
,
A.
, and
Klingmann
,
J.
,
2017
, “
Investigation of Hydrogen Enriched Methane Flame in a Dry Low Emission Industrial Prototype Burner at Atmospheric Pressure Conditions
,”
ASME
Paper No. GT2017-63924.10.1115/GT2017-63924
19.
O'Connor
,
J.
,
Hemchandra
,
S.
, and
Lieuwen
,
T.
,
2016
, “
Combustion Instabilities in Lean Premixed Systems
,”
Lean Combustion: Technology and Control
, 2nd ed.,
D.
Dunn-Rankin
and
P.
Therkelsen
, eds.,
Academic Press
,
London
, UK, pp.
231
259
.
20.
Sengissen
,
A. X.
,
Van Kampen
,
J. F.
,
Huls
,
R. A.
,
Stoffels
,
G. G. M.
,
Kok
,
J. B. W.
, and
Poinsot
,
T. J.
,
2007
, “
LES and Experimental Studies of Cold and Reacting Flow in a Swirled Partially Premixed Burner With and Without Fuel Modulation
,”
Combust. Flame
,
150
(
1–2
), pp.
40
53
.10.1016/j.combustflame.2007.02.009
21.
Lee
,
J. G.
,
Kim
,
K.
, and
Santavicca
,
D. A.
,
2000
, “
Effect of Injection Location on the Effectiveness of an Active Control System Using Secondary Fuel Injection
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
739
746
.10.1016/S0082-0784(00)80276-3
22.
Li
,
J.
,
Peluso
,
S.
,
Quay
,
B.
,
Santavicca
,
D.
,
Blust
,
J.
, and
Srinivasan
,
R.
,
2017
, “
Effect of Pilot Flame on Flame Macrostructure and Combustion Instability
,”
ASME
Paper No. GT2017-64079.10.1115/GT2017-64079
23.
Gupta
,
A. K.
,
Lewis
,
M. J.
, and
Daurer
,
M.
,
2001
, “
Swirl Effects on Combustion Characteristics of Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
619
626
.10.1115/1.1339987
24.
Russ
,
M.
,
Meyer
,
A.
, and
Büchner
,
H.
,
2007
, “
Scaling Thermo-Acoustic Characteristics of LP and LPP Swirl Flames
,”
ASME
Paper No. GT2007-27775.10.1115/GT2007-27775
25.
Meier
,
W.
,
Keck
,
O.
,
Noll
,
B.
,
Kunz
,
O.
, and
Stricker
,
W.
,
2000
, “
Investigations in the TECFLAM Swirling Diffusion Flame: Laser Raman Measurements and CFD Calculations
,”
Appl. Phys. B
,
71
(
5
), pp.
725
731
.10.1007/s003400000436
26.
Åbom
,
M.
, and
Bodén
,
H.
,
1988
, “
Error Analysis of Two‐Microphone Measurements in Ducts With Flow
,”
J. Acoust. Soc. Am.
,
83
(
6
), pp.
2429
2438
.10.1121/1.396322
27.
Alvarez
,
R.
,
Rodero
,
A.
, and
Quintero
,
M. C.
,
2002
, “
An Abel Inversion Method for Radially Resolved Measurements in the Axial Injection Torch
,”
Spectrochim. Acta, Part B
,
57
(
11
), pp.
1665
1680
.10.1016/S0584-8547(02)00087-3
28.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations: I. The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
29.
Pierce
,
C. D.
, and
Moin
,
P.
,
2004
, “
Progress-Variable Approach for Large-Eddy Simulation of Non-Premixed Turbulent Combustion
,”
J. Fluid Mech.
,
504
, pp.
73
97
.10.1017/S0022112004008213
30.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
, and
Gardiner
,
W. C.
, Jr.,
1999
, “
GRI 3.0 Mechanism, Version 3.0 7/30/99
,”
Gas Research Institute
,
Chicago, IL
.http://combustion.berkeley.edu/grimech/version30/text30.html
31.
Shanbhogue
,
S. J.
,
Sanusi
,
Y. S.
,
Taamallah
,
S.
,
Habib
,
M. A.
,
Mokheimer
,
E. M. A.
, and
Ghoniem
,
A. F.
,
2016
, “
Flame Macrostructures, Combustion Instability and Extinction Strain Scaling in Swirl-Stabilized Premixed CH4/H2 Combustion
,”
Combust. Flame
,
163
, pp.
494
507
.10.1016/j.combustflame.2015.10.026
32.
Coriton
,
B.
,
Frank
,
J. H.
, and
Gomez
,
A.
,
2016
, “
Interaction of Turbulent Premixed Flames With Combustion Products: Role of Stoichiometry
,”
Combust. Flame
,
170
, pp.
37
52
.10.1016/j.combustflame.2016.04.020
33.
Coppola
,
G.
,
Coriton
,
B.
, and
Gomez
,
A.
,
2009
, “
Highly Turbulent Counterflow Flames: A Laboratory Scale Benchmark for Practical Systems
,”
Combust. Flame
,
156
(
9
), pp.
1834
1843
.10.1016/j.combustflame.2009.03.017
34.
Coriton
,
B.
,
Smooke
,
M. D.
, and
Gomez
,
A.
,
2010
, “
Effect of the Composition of the Hot Product Stream in the Quasi-Steady Extinction of Strained Premixed Flames
,”
Combust. Flame
,
157
(
11
), pp.
2155
2164
.10.1016/j.combustflame.2010.05.002
35.
Coriton
,
B.
,
Frank
,
J. H.
, and
Gomez
,
A.
,
2013
, “
Effects of Strain Rate, Turbulence, Reactant Stoichiometry and Heat Losses on the Interaction of Turbulent Premixed Flames With Stoichiometric Counterflowing Combustion Products
,”
Combust. Flame
,
160
(
11
), pp.
2442
2456
.10.1016/j.combustflame.2013.05.009
36.
Mastorakos
,
E.
,
Taylor
,
A.
, and
Whitelaw
,
J. H.
,
1995
, “
Extinction of Turbulent Counterflow Flames With Reactants Diluted by Hot Products
,”
Combust. Flame
,
102
(
1–2
), pp.
101
114
.10.1016/0010-2180(94)00252-N
37.
Skiba
,
A.
,
Wabel
,
T.
,
Carter
,
C. D.
,
Hammack
,
S.
,
Temme
,
J.
, and
Driscoll
,
J.
,
2018
, “
Premixed Flames Subjected to Extreme Levels of Turbulence Part I: Flame Structure and a New Measured Regime Diagramitle
,”
Combust. Flame
,
189
, pp.
407
432
.10.1016/j.combustflame.2017.08.016
38.
Tyagi
,
A.
,
Boxx
,
I.
,
Peluso
,
S.
, and
O'Connor
,
J.
,
2019
, “
Statistics and Topology of Local Flame–Flame Interactions in Turbulent Flames
,”
Combust. Flame
,
203
, pp.
92
104
.10.1016/j.combustflame.2019.02.006
39.
Foley
,
C.
,
Chterev
,
I.
,
Noble
,
B.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2017
, “
Shear Layer Flame Stabilization Sensitivities in a Swirling Flow
,”
Int. J. Spray Combust. Dyn.
,
9
(
1
), pp.
3
18
.10.1177/1756827716653426
40.
Steele
,
R. C.
,
Cowell
,
L. H.
,
Cannon
,
S. M.
, and
Smith
,
C. E.
,
2000
, “
Passive Control of Combustion Instability in Lean Premixed Combustors
,”
ASME J. Eng. Gas Turbines Power
,
122
(
3
), pp.
412
419
.10.1115/1.1287166
You do not currently have access to this content.