Abstract

This article proposes a rotordynamic identification method using the accelerating sweep frequency excitation method. The computational fluid dynamics transient solution combined with the moving grid method is utilized to obtain the transient flow field of the seal excited by the whirling rotor with an accelerating frequency. Rotordynamic coefficients at swept frequencies are obtained by analyzing the transient response force acting on the rotor. Rotordynamic coefficients of three published experimental seals including a labyrinth seal, a fully partitioned pocket damper seal and a honeycomb seal are identified to validate the proposed method. The results show that the predicted rotordynamic coefficients are all well agreement with the trend of experimental data. Compared with the existing numerical models based on transient solutions, the central processing unit consumption of the proposed method is substantially reduced by 98% when achieving the same frequency resolution. In addition, the impact of the exciting acceleration on the identification accuracy is also illustrated.

References

1.
Kong
,
X.
,
Liu
,
G.
,
Liu
,
Y.
, and
Zheng
,
L.
,
2017
, “
Experimental Testing for the Influences of Rotation and Tip Clearance on the Labyrinth Seal in a Compressor Stator Well
,”
Aerosp. Sci. Technol.
,
71
, pp.
556
567
.10.1016/j.ast.2017.10.003
2.
Zahorulko
,
A. V.
, and
Lee
,
Y.
,
2021
, “
Computational Analysis for Scallop Seals With Sickle Grooves: Part I—Leakage Performance
,”
Mech. Syst. Signal Process.
,
147
, p.
107024
.10.1016/j.ymssp.2020.107024
3.
Childs
,
D. W.
,
Nelson
,
C. E.
,
Nicks
,
C.
,
Scharrer
,
J.
,
Elrod
,
D.
, and
Hale
,
K.
,
1986
, “
Theory Versus Experiment for the Rotordynamic Coefficients of Labyrinth Gas Seals: Part 1—Test Facility and Apparatus
,”
ASME J. Tribol.
,
108
(
3
), pp.
426
431
.10.1115/1.3261226
4.
Iwatsubo
,
T.
,
1980
, “
Evaluation of Instability of Forces of Labyrinth Seals in Turbines or Compressors
,” Workshop on Rotordynamic Instability Problems in High-Performance Turbomachinery, College Station, TX, Document No.
ID19800021214
.https://ntrs.nasa.gov/api/citations/19800021214/downloads/19800021214.pdf?attachment=true
5.
Childs
,
D. W.
, and
Scharrer
,
J. K.
,
1986
, “
An Iwatsubo-Based Solution for Labyrinth Seals: Comparison to Experimental Results
,”
ASME J. Eng. Gas Turbines Power
,
108
(
2
), pp.
325
331
.10.1115/1.3239907
6.
Kleynhans
,
G. F.
, and
Childs
,
D. W.
,
1997
, “
The Acoustic Influence of Cell Depth on the Rotordynamic Characteristics of Smooth-Rotor/Honeycomb-Stator Annular Gas Seals
,”
ASME J. Eng. Gas Turbines Power
,
119
(
4
), pp.
949
956
.10.1115/1.2817079
7.
Marquette
,
O. R.
, and
Childs
,
D. W.
,
1996
, “
An Extended Three-Control-Volume Theory for Circumferentially-Grooved Liquid Seals
,”
ASME J. Tribol.
,
118
(
2
), pp.
276
85
.10.1115/1.2831296
8.
Florjancic
,
S.
,
1990
, “
Annular Seals of High Energy Centrifugal Pumps: A New Theory and Full Scale Measurement of Rotordynamic Coefficients and Hydraulic Friction Factors Coefficients and Hydraulic Friction Factors
,”
Ph.D. thesis
,
Swiss Federal Institute of Technology
,
Zürich, Switzerland
.10.3929/ethz-a-000609883
9.
Zhang
,
M.
, and
Yang
,
J.
,
2020
, “
Spiral Flow Induced Destabilizing Force Analysis and Its Reduction With a Novel Helix-Comb Gas Seal
,”
Aerosp. Sci. Technol.
,
105
, p.
105997
.10.1016/j.ast.2020.105997
10.
Zahorulko
,
A. V.
, and
Lee
,
Y.
,
2021
, “
Computational Analysis for Scallop Seals With Sickle Grooves, Part II: Rotordynamic Characteristics
,”
Mech. Syst. Signal Process.
,
147
, p.
107154
.10.1016/j.ymssp.2020.107154
11.
Moore
,
J. J.
,
2003
, “
Three-Dimensional CFD Rotordynamic Analysis of Gas Labyrinth Seals
,”
ASME J. Vib. Acoust.
,
125
(
4
), pp.
427
433
.10.1115/1.1615248
12.
Hirano
,
T.
,
Guo
,
Z.
, and
Kirk
,
R. G.
,
2005
, “
Application of Computational Fluid Dynamics Analysis for Rotating Machinery-Part II: Labyrinth Seal Analysis
,”
ASME J. Eng. Gas Turbines Power
,
127
(
4
), pp.
820
826
.10.1115/1.1808426
13.
Chochua
,
G.
, and
Soulas
,
T. A.
,
2007
, “
Numerical Modeling of Rotordynamic Coefficients for Deliberately Roughened Stator Gas Annular Seals
,”
ASME J. Tribol.
,
129
(
2
), pp.
424
429
.10.1115/1.2647531
14.
Yan
,
X.
,
Li
,
J.
, and
Feng
,
Z.
,
2011
, “
Investigations on the Rotordynamic Characteristics of a Hole-Pattern Seal Using Transient CFD and Periodic Circular Orbit Model
,”
ASME J. Vib. Acoust.
,
133
(
4
), p.
041007
.10.1115/1.4003403
15.
Zhang
,
W.
,
Gu
,
Q.
,
Yang
,
J.
, and
Li
,
C.
,
2019
, “
Application of a Novel Rotordynamic Identification Method for Annular Seals With Arbitrary Elliptical Orbits and Eccentricities
,”
ASME J. Eng. Gas Turbines Power
,
141
(
9
), p.
091016
.10.1115/1.4044121
16.
Yan
,
X.
,
He
,
K.
,
Li
,
J.
, and
Feng
,
Z.
,
2012
, “
Rotordynamic Performance Prediction for Surface-Roughened Seal Using Transient Computational Fluid Dynamics and Elliptical Orbit Model
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
226
(
8
), pp.
975
988
.10.1177/0957650912460358
17.
Li
,
J.
,
Li
,
Z.
, and
Feng
,
Z.
,
2012
, “
Investigations on the Rotordynamic Coefficients of Pocket Damper Seals Using the Multifrequency, One-Dimensional, Whirling Orbit Model and RANS Solutions
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
102510
.10.1115/1.4007063
18.
Li
,
Z.
,
Li
,
J.
, and
Yan
,
X.
,
2013
, “
Multiple Frequencies Elliptical Whirling Orbit Model and Transient RANS Solution Approach to Rotordynamic Coefficients of Annual Gas Seals Prediction
,”
ASME J. Vib. Acoust.
,
135
(
3
), p.
031005
.10.1115/1.4023143
19.
Li
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2016
, “
Comparisons of Rotordynamic Characteristics Predictions for Annular Gas Seals Using the Transient Computational Fluid Dynamic Method Based on Different Single-Frequency and Multifrequency Rotor Whirling Models
,”
ASME J. Tribol.
,
138
(
1
), p.
011701
.10.1115/1.4030807
20.
Moore
,
J. J.
, and
Palazzolo
,
A.
,
1999
, “
CFD Comparison to 3D Laser Anemometer and Rotordynamic Force Measurements for Grooved Liquid Annular Seals
,”
ASME J. Tribol.
,
121
(
2
), pp.
306
314
.10.1115/1.2833937
21.
Childs
,
D. W.
, and
Scharrer
,
J. K.
,
1988
, “
Theory Versus Experiment for the Rotordynamic Coefficient of Labyrinth Gas Seals: Part II—A Comparison to Experiment
,”
ASME J. Vib. Acoust. Stress Reliab. Des.
,
110
(
3
), pp.
281
287
.10.1115/1.3269514
22.
Ertas
,
B. H.
,
Delgado
,
A.
, and
Vannini
,
G.
,
2012
, “
Rotordynamic Force Coefficients for Three Types of Annular Gas Seals With Inlet Preswirl and High Differential Pressure Ratio
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
042503
.10.1115/1.4004537
23.
Manish
,
R. T.
, and
James
,
R. H.
,
2020
, “
Rotordynamic Characteristics Prediction for Hole-Pattern Seals Using Computational Fluid Dynamic
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021004
.10.1115/1.4044760
24.
Wu
,
T.
, and
San
,
A. L.
,
2019
, “
Leakage and Dynamic Force Coefficients for Two Labyrinth Gas Seals: Teeth-on-Stator and Interlocking Teeth Configurations. A Computational Fluid Dynamics Approach to Their Performance
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
42501
.10.1115/1.4041123
25.
Picardo
,
A.
, and
Childs
,
D. W.
,
2005
, “
Rotordynamic Coefficients for a Tooth-on-Stator Labyrinth Seal at 70 Bar Supply Pressures: Measurements Versus Theory and Comparisons to a Hole-Pattern Stator Seal
,”
ASME J. Eng. Gas Turbines Power
,
127
(
4
), pp.
843
855
.10.1115/1.1924634
You do not currently have access to this content.