Abstract

The use of biogas has currently two disadvantages. First, processing biogas to natural gas quality for feeding into the natural gas grid is a rather energy-consuming process. Second, the conversion into electricity directly in biogas plants produces waste heat, which largely cannot be used. Therefore, a feed-in of the desulfurized and dry biogas to local biogas grids would be preferable. Thus, the biogas could be used directly at the end consumer for heat and power production. As biogas varies in its methane (CH4) and carbon dioxide (CO2) content, respectively, this paper studies the influence of different biogas mixtures compared to natural gas on the combustion in a flameless oxidation (FLOX®)-based six nozzle combustor. The single staged combustor is suitable for use in a micro gas turbine (MGT) based combined heat and power (CHP) system with an electrical power output of 3 kW. The combustor is studied in an optically accessible atmospheric test rig, as well as integrated into the MGT system. This paper focuses on the influence of the admixture of CO2 to natural gas on the NOx and CO emissions. Furthermore, at atmospheric conditions, the shape and location of the heat release zone are investigated using OH* chemiluminescence (OH* CL). The combustor could be stably operated in the MGT within the complete stationary operating range with all fuel mixtures.

References

1.
Energy Charts
,
2019
,
Fraunhofer-Institut Für Solare Energieforschung ISE
,
Energy Charts
,
Freiburg, Germany
.
2.
Reppich
,
M.
,
Datzmann
,
S.
,
Li
,
X.
,
Rosenbauer
,
S.
,
Schlecht
,
C.
, and
Tschepur
,
S.
,
2009
, “
Vergleich Verschiedener Aufbereitungsverfahren Von Biogas Zur Einspeisung in Das Erdgasnetz
,”
Chem. Ing. Tech.
,
81
(
3
), pp.
211
223
.10.1002/cite.200800125
3.
Zornek
,
T.
,
Mosbach
,
T.
, and
Aigner
,
M.
,
2018
, “
Optical Measurements of a Lower Calorific Values-Combustor Operated in a Micro Gas Turbine With Various Fuel Compositions
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p. 041032.10.1115/1.4040908
4.
Wünning
,
J.
, and
Wünning
,
J.
,
1997
, “
Flameless Oxidation to Reduce Thermal NO-Formation
,”
Prog. Energy Combust. Sci.
,
23
(
1
), pp.
81
94
.10.1016/S0360-1285(97)00006-3
5.
Cavaliere
,
A.
, and
de Joannon
,
M.
,
2004
, “
Mild Combustion
,”
Prog. Energy Combust. Sci.
,
30
(
4
), pp.
329
366
.10.1016/j.pecs.2004.02.003
6.
Lammel
,
O.
,
Stöhr
,
M.
,
Kutne
,
P.
,
Dem
,
C.
,
Meier
,
W.
, and
Aigner
,
M.
,
2011
, “
Experimental Analysis of Confined Jet Flame by Laser Measurement Techniques
,”
ASME
Paper No. GT2011-45111.10.1115/GT2011-45111
7.
Zornek
,
T.
,
Monz
,
T.
, and
Aigner
,
M.
,
2013
, “
Experimentelle Charakterisierung Eines Holzgas-Brenners Für Mikrogasturbinen
,”
26. Deutscher Flammentag
, Vol.
2161
, Düsseldorf, Germany, pp.
775
779
.
8.
Zornek
,
T.
,
Monz
,
T.
, and
Aigner
,
M.
,
2013
, “
A Micro Gas Turbine Combustor for the Use of Product Gases From Biomass Gasification
,”
Proceedings of the European Combustion Meeting
, Lund, Sweden, June 25–28, Paper No. P4-39.
9.
Zornek
,
T.
,
Monz
,
T.
, and
Aigner
,
M.
,
2014
, “
Effizient, Flexibel, sauber—FLOX®-Brennkammersysteme Für Mikrotasturbinen
,”
BWK
,
66
(
9
), pp.
13
16
.
10.
Zanger
,
J.
,
Monz
,
T.
, and
Aigner
,
M.
,
2013
, “
Progress in Gas Turbine Performance
,”
InTech, ch. Experimental Investigation of the Influence of Combustor Cooling on the Characteristics of a FLOX®-Based Micro Gas Turbine Combustor
, InTech, Rijeka, Croatia, pp.
165
184
.
11.
Zanger
,
J.
,
Monz
,
T.
, and
Aigner
,
M.
,
2015
, “
Experimental Investigation of the Combustion Characteristics of a Double-Staged FLOX®-Based Combustor on an Atmospheric and a Micro Gas Turbine Test Rig
,”
ASME
Paper No. GT2015-42313.10.1115/GT2015-42313
12.
Bower
,
H. E.
,
Grimm
,
F.
,
Schwärzle
,
A.
,
Roth
,
J.
,
Zornek
,
T.
, and
Kutne
,
P.
,
2018
, “
Experimental Analysis of the Fuel Flexibility of a Jet-Stabilized Micro Gas Turbine Combustor Designed for Low Calorific Gases
,”
Proceedings of GPPS Forum 18
, Montréal, PQ, Canada, May 7–9, Paper No. GPPS-2018-0012.https://www.researchgate.net/publication/325736491_Experimental_Analysis_of_the_Fuel_Flexibility_of_a_Jet-Stabilized_Micro_Gas_Turbine_Combustor_Designed_for_Low_Calorific_Gases
13.
Seliger
,
H.
,
Huber
,
A.
, and
Aigner
,
M.
,
2015
, “
Experimental Investigation of a FLOX®-Based Combustor for a Small-Scale Gas Turbine Based Chp System Under Atmospheric Conditions
,”
ASME
Paper No. GT2015-43094.10.1115/GT2015-43094
14.
Gohl
,
I.
,
2015
, “
Experimentelle Untersuchung Der Sensibilität Des Brennverhaltens Auf Verschiedene Erdgasqualitäten Und Vormischgüten in Einem FLOX® Gasturbinen Brenner
,” Diplomarbeit, University of Stuttgart, Stuttgart, Germany.
15.
Dandy
,
D.
, and
Vosen
,
S.
,
1992
, “
Numerical and Experimental Studies of Hydroxyl Radical Chemiluminescence in Methane-Air Flames
,”
Combust. Sci. Technol.
,
82
(
1–6
), pp.
131
150
.10.1080/00102209208951816
16.
Nori
,
V. N.
,
2008
, “
Modeling and Analysis of Chemiluminescence Sensing for Syngas, Methane and Jet-A Combustion
,”
Ph.D. thesis
,
Georgia Institute of Technology
,
Atlanta, GA
.http://seitzman.gatech.edu/nori_venkata_n_200808_phd.pdf
17.
Seliger-Ost
,
H.
,
2019
, “
Entwicklung Eines FLOX®-Basierten Brennersystems Für Eine Rekuperierte Mikrogasturbine im Kleinen Leistungsbereich
,” Ph.D. thesis,
University of Stuttgart
,
Stuttgart, Germany
.
18.
Federal Ministry for Environment, Nature Conservation and Nuclear Safety
,
2002
,
First General Administrative Regulation Pertaining the Federal Emission Control Act
,
Technical Instructions on Air Quality Control—TA Luft
.
19.
Lefebvre
,
A. H.
,
1999
,
Gas Turbine Combustion
,
CFC Press
,
New York
.
20.
Joos
,
F.
,
2006
,
Technische Verbrennung – Verbrennungstechnik, Verbrennungsmodellierung, Emissionen
,
Springer-Verlag
,
Berlin Heidelberg, Germany
.
21.
Biagioli
,
F.
, and
Güthe
,
F.
,
2007
, “
Effect of Pressure and Fuel-Air Unmixedness on NOx Emissions From Industrial Gas Turbine Burners
,”
Combust. Flame
,
151
(
1–2
), pp.
274
288
.10.1016/j.combustflame.2007.04.007
22.
Burdet
,
A.
,
Lachaus
,
T.
,
de la
,
C.
,
García
,
M.
, and
Winkler
,
D.
,
2010
, “
Combustion Under Flue Gas Recirculation Conditions in a Gas Turbine Lean Premix Burner
,”
ASME
Paper No. GT2010-23396.10.1115/GT2010-23396
23.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Stagni
,
A.
,
Pelucchi
,
M.
,
Cuoci
,
A.
, and
Faravelli
,
T.
,
2014
, “
Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass-Derived Transportation Fuels
,”
Int. J. Chem. Kinetics
,
46
(
9
), pp.
512
542
.10.1002/kin.20867
24.
Ranzi
,
E.
,
Cavallotti
,
C.
,
Cuoci
,
A.
,
Frassoldati
,
A.
,
Pelucchi
,
M.
, and
Faravelli
,
T.
,
2015
, “
New Reaction Classes in the Kinetic Modeling of Low Temperature Oxidation of n-Alkanes
,”
Combust. Flame
,
162
(
5
), pp.
1679
1691
.10.1016/j.combustflame.2014.11.030
25.
Bagheri
,
G.
,
Ranzi
,
E.
,
Pelucchi
,
M.
,
Parente
,
A.
,
Frassoldati
,
A.
, and
Faravelli
,
T.
,
2020
, “
Comprehensive Kinetic Study of Combustion Technologies for Low Environmental Impact: MILD and OXY-Fuel Combustion of Methane
,”
Combust. Flame
,
212
, pp.
142
155
.10.1016/j.combustflame.2019.10.014
26.
Visser
,
W. P. J.
,
Shakariyants
,
S. A.
,
de Later
,
M. T. L.
,
Haj Ayed
,
A.
, and
Kusterer
,
K.
,
2012
, “
Performance Optimizaiton of a 3 kW Microturbine for CHP Application
,”
ASME
Paper No. GT2012-68686.10.1115/GT2012-68686
27.
Warnatz
,
J.
,
Maas
,
U.
, and
Dibble
,
R.
,
2006
,
Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation
,
Springer-Verlag
,
Berlin, Heidelberg, Germany
.
You do not currently have access to this content.