Abstract

This paper presents wall-modeled large-eddy simulations (WMLES) of a chute-type turbine rim seal. Configurations with an axisymmetric annulus flow and with nozzle guide vanes fitted (but without rotor blades) are considered. The passive scalar concentration solution and WMLES are validated against available data in the literature for uniform convection and a rotor–stator cavity flow. The WMLES approach is shown to be effective, giving significant improvements over an eddy viscosity turbulence model, in prediction of rim seal effectiveness compared to research rig measurements. WMLES requires considerably less computational time than wall-resolved LES, and has the potential for extension to engine conditions. All WMLES solutions show rotating inertial waves in the chute seal. Good agreement between WMLES and measurements for sealing effectiveness in the configuration without vanes is found. For cases with vanes fitted, the WMLES simulation shows less ingestion than the measurements, and possible reasons are discussed.

References

1.
O'Mahoney
,
T. S. D.
,
Hills
,
N. J.
,
Chew
,
J. W.
, and
Scanlon
,
T.
,
2011
, “
Large-Eddy Simulation of Rim Seal Ingestion
,”
Proc. Inst. Mech. Eng., Part C
,
225
(
12
), pp.
2881
2891
.10.1177/0954406211409285
2.
Gao
,
F.
,
Chew
,
J. W.
, and
Marxen
,
O.
,
2020
, “
Inertial Waves in Turbine Rim Seal Flows
,”
Phys. Rev. Fluids
,
5
(
2
), p.
024802
.10.1103/PhysRevFluids.5.024802
3.
Chew
,
J. W.
,
Gao
,
F.
, and
Palermo
,
D. M.
,
2019
, “
Flow Mechanisms in Axial Turbine Rim Sealing
,”
Proc. Inst. Mech. Eng., Part C
,
233
(
23–24
), pp.
7637
7657
.10.1177/0954406218784612
4.
Amirante
,
D.
, and
Hills
,
N. J.
,
2015
, “
Large-Eddy Simulations of Wall Bounded Turbulent Flows Using Unstructured Linear Reconstructions Techniques
,”
ASME J. Turbomach.
,
137
(
5
), p.
051006
.10.1115/1.4028549
5.
Gao
,
F.
,
Chew
,
J. W.
,
Beard
,
P. F.
,
Amirante
,
D.
, and
Hills
,
N. J.
,
2018
, “
Large-Eddy Simulation of Unsteady Turbine Rim Sealing Flows
,”
Int. J. Heat Fluid Flow
,
70
, pp.
160
170
.10.1016/j.ijheatfluidflow.2018.02.002
6.
Beard
,
P. F.
,
Gao
,
F.
,
Chew
,
J. W.
, and
Chana
,
K. S.
,
2017
, “
Unsteady Flow Phenomena in Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
032501
.10.1115/1.4034452
7.
Gao
,
F.
,
Poujol
,
N.
,
Chew
,
J. W.
, and
Beard
,
P. F.
,
2018
, “
Advanced Numerical Simulation of Turbine Rim Seal Flows and Consideration for RANS Turbulence Modelling
,”
ASME
Paper No. GT2018-75116. 10.1115/GT2018-75116
8.
Almendral-Fernandez
,
G.
,
Amirante
,
D.
, and
Hills
,
N. J.
,
2018
, “
Use of Zonal Hybrid URANS/LES Methodology for Prediction of Rim Seal Ingestion Into a Low Pressure Turbine Cavity
,”
AIAA
Paper No. AIAA2018-4917.10.2514/6.2018-4917
9.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA 30th Aerospace Sciences Meeting and Exibit
, Reno, NV, Jan. 6–9.10.2514/6.1992-439
10.
Horwood
,
J. T. M.
,
Hualca
,
F. P.
,
Scobie
,
J. A.
,
Wilson
,
M.
,
Sangan
,
C. M.
, and
Lock
,
G. D.
,
2019
, “
Experimental and Computational Investigation of Flow Instabilities in Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011028
.10.1115/1.4041115
11.
Horwood
,
J. T. M.
,
Hualca
,
F. P.
,
Scobie
,
J. A.
,
Wilson
,
M.
,
Sangan
,
C. M.
,
Lock
,
G. D.
,
Dahlqvist
,
J.
, and
Fridh
,
J.
,
2020
, “
Flow Instabilities in Gas Turbine Chute Seals
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021019
.10.1115/1.4045148
12.
Pogorelov
,
A.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2019
, “
Large-Eddy Simulation of the Unsteady Full 3D Rim Seal Flow in a One-Stage Axial-Flow Turbine
,”
Flow, Turbul. Combust.
,
102
(
1
), pp.
189
220
.10.1007/s10494-018-9956-9
13.
Bridel-Bertomeu
,
T.
,
Gicquel
,
L. Y.
, and
Staffelbach
,
G.
,
2016
, “
Wall Modelled LES and Its Impact on Rotor-Stator/Cavity Unsteady Features
,”
ASME
Paper No. GT2016-57244.10.1115/GT2016-57244
14.
Kusbeci
,
M. E.
, and
Chew
,
J. W.
,
2018
, “
Assessment of Wall-Modelled LES for Pre-Swirl Cooling Systems
,”
ASME
Paper No. GT2018-75112.10.1115/GT2018-75112
15.
Da Soghe
,
R.
,
Bianchini
,
C.
, and
D'Errico
,
J.
,
2017
, “
Numerical Characterization of Flow and Heat Transfer in Pre-Swirl Systems
,”
ASME
Paper No. GT2017-64503.10.1115/GT2017-64503
16.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.10.1016/0021-9991(81)90128-5
17.
Moinier
,
P.
,
1999
, “
Algorithm Developments for an Unstructured Viscous flow Solver
,”
Ph.D. thesis
,
University of Oxford
,
Oxford, UK
.http://people.maths.ox.ac.uk/gilesm/files/pierre_thesis.pdf
18.
Spalding
,
D. B.
,
1961
, “
A Single Formula for the Law of the Wall
,”
ASME J. Appl. Mech.
,
28
(
3
), pp.
455
458
.10.1115/1.3641728
19.
Bose
,
S. T.
, and
Park
,
G. I.
,
2018
, “
Wall-Modeled Large-Eddy Simulation for Complex Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
50
, pp.
536
561
.https://doi.org/10.1146/annurev-fluid-122316-045241
20.
Boudet
,
J.
,
2005
, “
Numerical Simulation of Rim Sealing in Axial Turbines
,” Rolls-Royce UK Confidential Report, Report No. TFS-UTC/2005/05.
21.
Séverac
,
É.
,
Poncet
,
S.
,
Serre
,
É.
, and
Chauve
,
M.-P.
,
2007
, “
Large Eddy Simulation and Measurements of Turbulent Enclosed Rotor-Stator Flows
,”
Phys. Fluids
,
19
(
8
), p.
085113
.10.1063/1.2759530
22.
Daily
,
J. W.
, and
Nece
,
R. E.
,
1960
, “
Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
217
230
.10.1115/1.3662532
23.
Bru Revert
,
A.
,
Beard
,
P. F.
,
Chew
,
J. W.
, and
Bottenheim
,
S.
,
2020
, “
Performance of a Turbine Rim Seal Subject to Rotationally-Driven and Pressure-Driven Ingestion
,”
ASME
Paper No. GT2020-14773.10.1115/GT2020-14773
24.
Palermo
,
D. M.
,
Gao
,
F.
,
Chew
,
J. W.
, and
Beard
,
P. F.
,
2019
, “
Effect of Annulus Flow Conditions on Turbine Rim Seal Ingestion
,”
ASME
Paper No. GT2019-90489.10.1115/GT2019-90489
25.
Ansys, Inc
, “ANSYS ICEM, ver. 14.0,” Ansys, Inc, Canonsburg, PA, accessed Jan. 12, 2021, https://www.academia.edu/3196257/ANSYS_ICEM_CFD_14_User_Manual
26.
Onori
,
M.
,
Amirante
,
D.
,
Hills
,
N. J.
, and
Chew
,
J. W.
,
2019
, “
Heat Transfer Prediction From Large Eddy Simulation of a Rotating Cavity With Radial Inflow
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121002
.10.1115/1.4045150
27.
Poinsot
,
T. J.
, and
Lele
,
S. K.
,
1992
, “
Boundary Conditions for Direct Simulations for Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.10.1016/0021-9991(92)90046-2
You do not currently have access to this content.