Abstract

The mathematical modeling of journal bearings has advanced significantly since the Reynolds equation was first proposed. Advances in the processing capacity of computers and numerical techniques led to multiphysical models that are able to describe the behavior of hydrodynamic bearings. However, many researchers prefer to apply simple models of these components in rotor-bearing analyses due to the computational effort that complex models require. Surrogate modeling techniques are statistical procedures that can be applied to represent complex models. In this work, Kriging models are formulated to substitute the thermohydrodynamic (THD) models of three different bearings found in a Francis hydropower unit, namely, a cylindrical journal (CJ) bearing, a tilting-pad journal (TPJ) bearing, and a tilting-pad thrust (TPT) bearing. The results determined by using the proposed approach reveal that Kriging models can be satisfactorily used as surrogate THD models of hydrodynamic bearings.

References

1.
Reynolds
,
O.
,
1886
, “
On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower's Experiments, Including an Experimental Determination of the Viscosity of Olive Oil
,”
Philos. Trans. R. Soc.
,
177
, pp.
157
234
.10.1098/rspl.1886.0021
2.
Dimond
,
T.
,
Younan
,
A.
, and
Allaire
,
P.
,
2011
, “
A Review of Tilting Pad Bearing Theory
,”
Int. J. Rotating Mach.
,
2011
, pp.
1
23
.10.1155/2011/908469
3.
Dowson
,
D.
,
1962
, “
A Generalized Reynolds Equation for Fluid-Film Lubrication
,”
Int. J. Mech. Sci.
,
4
(
2
), pp.
159
70
.10.1016/S0020-7403(62)80038-1
4.
Mitsui
,
J.
,
1987
, “
A Study of Thermohydrodynamic Lubrication in a Circular Journal Bearing
,”
Tribol. Int.
,
20
(
6
), pp.
331
341
.10.1016/0301-679X(87)90061-2
5.
Rajalingham
,
C.
, and
Prabhu
,
B. S.
,
1987
, “
The Influence of Variation of Viscosity With Temperature on the Steady State Characteristics of Journal Bearings—Simplified Analysis
,”
Tribol. Int.
,
20
(
5
), pp.
261
266
.10.1016/0301-679X(87)90026-0
6.
Gethin
,
D. T.
,
1988
, “
A Finite Element Approach to Analysing Thermohydrodynamic Lubrication in Journal Bearings
,”
Tribol. Int.
,
21
(
2
), pp.
67
75
.10.1016/0301-679X(88)90077-1
7.
Knight
,
J. D.
, and
Barrett
,
L. E.
,
1988
, “
Analysis of Tilting Pad Journal Bearings With Heat Transfer Effects
,”
J. Tribol.
,
110
(
1
), pp.
128
133
.10.1115/1.3261550
8.
Cerda
,
A.
, and
Santos
,
I.
,
2012
, “
Stability Analysis of an Industrial Gas Compressor Supported by Tilting-Pad Bearings Under Different Lubrication Regimes
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
022504
.10.1115/1.4004214
9.
Daniel
,
G. B.
, and
Cavalca
,
K. L.
,
2013
, “
Evaluation of the Thermal Effects in Tilting Pad Bearing
,”
Int. J. Rotating Mach.
,
2013
, pp.
1
17
.10.1155/2013/725268
10.
Kim
,
K. W.
,
Tanaka
,
M.
, and
Hori
,
Y.
,
1983
, “
A Three-Dimensional Analysis of Thermohydrodynamic Performance of Sector-Shaped, Tilting-Pad Thrust Bearings
,”
J. Lubr. Technol.
,
105
(
3
), pp.
406
412
.10.1115/1.3254625
11.
Yang
,
P.
, and
Rodkiewicz
,
C. M.
,
1994
, “
The Effects of Temperature, Elasticity and Fore-Region Pressure Build-Up on the Performance of Centrally Pivoted Linear Pad Bearings
,”
Tribol. Int.
,
27
(
5
), pp.
331
341
.10.1016/0301-679X(94)90027-2
12.
Heinrichson
,
N.
,
Santos
,
I. F.
, and
Fuerst
,
A.
,
2007
, “
The Influence of Injection Pockets on the Performance of Tilting-Pad Thrust Bearings—Part I: Theory
,”
J. Tribol.
,
129
(
4
), pp.
895
903
.10.1115/1.2768609
13.
Kim
,
D.
,
Ki
,
J.
,
Kim
,
Y.
, and
Ahn
,
K.
,
2012
, “
Extended Three-Dimensional Thermo-Hydrodynamic Model of Radial Foil Bearing: Case Studies on Thermal Behaviors and Dynamic Characteristics in Gas Turbine Simulator
,”
ASME J. Eng. Gas Turbines Power
,
134
(
5
), pp.
1
13
.10.1115/1.4005215
14.
Liang
,
F.
,
Li
,
Y.
,
Zhou
,
M.
,
Xu
,
Q.
, and
Du
,
F.
,
2017
, “
Integrated Three-Dimensional Thermohydrodynamic Analysis of Turbocharger Rotor and Semifloating Ring Bearings
,”
ASME J. Eng. Gas Turbines Power
,
139
(
8
), p.
082501
.10.1115/1.4035735
15.
Dourado
,
A. D. P.
,
Barbosa
,
J. S.
,
Sicchieri
,
L. C.
,
Cavalini
,
A. A.
, Jr.
, and
Steffen
,
V.
, Jr.
,
2018
, “
Kriging Surrogate Model Dedicated to a Tilting-Pad Journal Bearing
,”
International Conference on Rotor Dynamics
,
Springer
,
Cham
, Sept. 23–27, pp.
347
358
.10.1007/978-3-319-99262-4_25
16.
Simpson
,
T. W.
,
Poplinski
,
J. D.
,
Koch
,
P. N.
, and
Allen
,
J. K.
,
2001
, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
,
17
(
2
), pp.
129
150
.10.1007/PL00007198
17.
Kleijnen
,
J. P.
,
2009
, “
Kriging Metamodeling in Simulation: A Review
,”
Eur. J. Oper. Res.
,
192
(
3
), pp.
707
716
.10.1016/j.ejor.2007.10.013
18.
Lucifredi
,
A.
,
Mazzieri
,
C.
, and
Rossi
,
M.
,
2000
, “
Application of Multiregressive Linear Models, Dynamic Kriging Models and Neural Network Models to Predictive Maintenance of Hydroelectric Power Systems
,”
Mech. Syst. Signal Process.
,
14
(
3
), pp.
471
494
.10.1006/mssp.1999.1257
19.
Khodaparast
,
H. H.
,
Mottershead
,
J. E.
, and
Badcock
,
K. J.
,
2011
, “
Interval Model Updating With Irreducible Uncertainty Using the Kriging Predictor
,”
Mech. Syst. Signal Process.
,
25
(
4
), pp.
1204
1226
.10.1016/j.ymssp.2010.10.009
20.
Ge
,
Q.
,
Ciuffo
,
B.
, and
Menendez
,
M.
,
2015
, “
Combining Screening and Metamodel-Based Methods: An Efficient Sequential Approach for the Sensitivity Analysis of Model Outputs
,”
Reliab. Eng. Syst. Saf.
,
134
, pp.
334
344
.10.1016/j.ress.2014.08.009
21.
Wang
,
J. T.
,
Wang
,
C. J.
, and
Zhao
,
J. P.
,
2017
, “
Frequency Response Function-Based Model Updating Using Kriging Model
,”
Mech. Syst. Signal Process.
,
87
, pp.
218
228
.10.1016/j.ymssp.2016.10.023
22.
Denimal
,
E.
,
Sinou
,
J.-J.
, and
Nacivet
,
S.
,
2019
, “
Influence of Structural Modifications of Automotive Brake Systems for Squeal Events With Kriging Meta-Modelling Method
,”
J. Sound Vib.
,
463
, p.
114938
.10.1016/j.jsv.2019.114938
23.
Han
,
F.
,
Guo
,
X.
, and
Gao
,
H.
,
2013
, “
Bearing Parameter Identification of Rotor-Bearing System Based on Kriging Surrogate Model and Evolutionary Algorithm
,”
J. Sound Vib.
,
332
(
11
), pp.
2659
2671
.10.1016/j.jsv.2012.12.025
24.
Han
,
F.
,
Guo
,
X.
,
Mo
,
C.
,
Gao
,
H.
, and
Hou
,
P.
,
2017
, “
Parameter Identification of Nonlinear Rotor-Bearing System Based on Improved Kriging Surrogate Model
,”
J. Vib. Control
,
23
(
5
), pp.
794
807
.10.1177/1077546315585242
25.
Sinou
,
J. J.
,
Nechak
,
L.
, and
Besset
,
S.
,
2018
, “
Kriging Metamodeling in Rotordynamics: Application for Predicting Critical Speeds and Vibrations of a Flexible Rotor
,”
Complexity
,
2018
, pp.
1
26
.10.1155/2018/1264619
26.
Wang
,
D.
,
Hua
,
C.
,
Dong
,
D.
,
He
,
B.
, and
Lu
,
Z.
,
2018
, “
Crack Parameters Identification Based on a Kriging Surrogate Model for Operating Rotors
,”
Shock Vib.
,
2018
, pp.
1
12
.10.1155/2018/9274526
27.
Barbosa
,
M. P.
, and
Alves
,
W. M.
,
2018
, “
Kriging-Based Surrogate Modeling for Rotordynamics Prediction in Rotor-Bearing System
,”
International Conference on Rotor Dynamics
,
Springer
,
Cham
, Sept. 23–27, pp.
306
321
.10.1007/978-3-319-99270-9_22
28.
Vance
,
J. M.
,
Zeidan
,
F. Y.
, and
Murphy
,
B. G.
,
2010
,
Machinery Vibration and Rotordynamics
,
Wiley
,
Hoboken, NJ
.
29.
Nässelqvist
,
M.
,
Gustavsson
,
R.
, and
Aidanpää
,
J.
,
2014
, “
Experimental and Numerical Simulation of Unbalance Response in Vertical Test Rig With Tilting-Pad Bearings
,”
Int. J. Rotating Mach.
,
2014
, pp.
1
10
.10.1155/2014/309767
30.
Seeton
,
C. J.
,
2006
, “
Viscosity–Temperature Correlation for Liquids
,”
Tribol. Lett.
,
22
(
1
), pp.
67
78
.10.1007/s11249-006-9071-2
31.
Maliska
,
C. R.
,
2004
,
Transferência de Calor e Mecânica Dos Fluidos Computacional
, 2nd ed.,
Livros Técnicos e Científicos Editora
,
Rio de Janeiro, RJ, Brazil
.
32.
Xiaobo
,
Z.
,
2017
, “
Comparison of Response Surface Method and Kriging Method for Approximation Modeling
,” Second International Conference on Power and Renewable Energy (
ICPRE
),
IEEE
,
Chengdu, China
, Sept. 20–23, pp.
66
70
.10.1109/ICPRE.2017.8390502
33.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Søndergaard
,
J.
,
2002
,
DACE: A Matlab Kriging Toolbox. IMM, Informatics and Mathematical Modelling
,
The Technical University of Denmark
,
Lyngby, Denmark
.
34.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
435
.10.1214/ss/1177012413
You do not currently have access to this content.