Abstract

The organic Rankine cycle (ORC) represents an emerging technology aimed at exploiting lower temperature heat sources, such as waste heat in industrial processes or exhaust heat in combustion engines. One key aspect of this technology is the efficient and economical operation at part load, typically realized by a partial admission control, which is challenging to predict numerically. Full-annulus computation can only be avoided applying empirical partial admission loss models to conventional full-admission computations. This article aims at assessing the reliability of such a loss model under real-gas and supersonic conditions as a first step toward knowledge-based improved loss models. Three different operating points of an 18.3 kW ORC turbine working with an ethanol–water mixture with two open stator passages (2 × 36 deg) are considered. Full-annulus computational fluid dynamics (CFD) computations are compared to experimental data and results of simulations in a conventional, full-admission, periodic 72 deg-sector model with application of a one-dimensional partial admission loss model. The experimentally obtained mass flow rate and efficiency are matched overall within their measurements accuracy. By highest inlet total pressure, the computed efficiency deviates about 4% from the experiments. Predictions of efficiency based on the full-admission and loss model correction deviate from full-annulus computations less than 1%. These findings suggest that the used empirical correlations for partial admission losses can provide acceptable results in the configuration under investigation.

References

1.
Tartière
,
T.
, and
Astolfi
,
M.
,
2017
, “
A World Overview of the Organic Rankine Cycle Market
,”
IV International Seminar on ORC Power Systems
, Milano, Italy, Sept. 13–15, pp.
2
9
.10.1016/j.egypro.2017.09.159
2.
Persico
,
G.
, and
Pini
,
M.
,
2017
, “
Fluid Dynamic Design of Organic Rankine Cycle Turbines
,”
Organic Rankine Cycle (ORC) Power Systems
,
Woodhead Publishing
,
Amsterdam, The Netherlands
, pp.
253
297
.10.1016/B978-0-08-100510-1.00008-9
3.
Pasquale
,
D.
,
Ghidoni
,
A.
, and
Rebay
,
S.
,
2013
, “
Shape Optimization of an Organic Rankine Cycle Radial Turbine Nozzle
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p. 042308. 10.1115/1.4023118
4.
Colonna
,
P.
,
Harinck
,
J.
,
Rebay
,
S.
, and
Guardone
,
A.
,
2008
, “
Real-Gas Effects in Organic Rankine Cycle Turbine Nozzles
,”
J. Propul. Power
,
24
(
2
), pp.
282
294
.10.2514/1.29718
5.
Seume
,
J.
,
Peters
,
M.
, and
Kunte
,
H.
,
2017
, “
Design and Test of a 10 kW ORC Supersonic Turbine Generator
,”
J. Phys.: Conf. Ser.
,
821
, p.
012023
.10.1088/1742-6596/821/1/012023
6.
Kosowski
,
K.
,
Stępień
,
R.
,
Włodarski
,
W.
,
Piwowarski
,
M.
, and
Hirt
,
Ł.
,
2014
, “
Partial Admission Stages of High Efficiency for a Microturbine
,”
J. Vib. Eng. Technol.
, 2(5), pp.
441
448
.https://www.researchgate.net/publication/288220714_Partial_Admission_Stages_of_High_Efficiency_for_a_Microturbine
7.
Weiß
,
A.
,
2015
, “
Volumetric Expander Versus Turbine—Which is the Better Choice for Small ORC Plants?
,” ASME Paper No.
22
.http://asme-orc2015.fyper.com/online/proceedings/documents/22.pdf
8.
Willers, O. W., Kunte
,
H.
, and
Seume
,
J. R.
,
2017
, “
Supersonic Impulse Turbine for Organic Rankine Cycle (ORC) Truck Applications
,” 26th Aachen Colloquium Automobile and Engine Technology, Aachen, Germany, Oct. 9–11, pp.
1557
1570
.
9.
Weiß
,
A.
,
Popp
,
T.
,
Zinn
,
G.
,
Preißinger
,
M.
, and
Brüggemann
,
D.
,
2019
, “
A Micro-Turbine-Generator-Construction-Kit (MTG-c-Kit) for Small-Scale Waste Heat Recovery ORC-Plants
,”
Energy
,
181
, pp.
51
55
.10.1016/j.energy.2019.05.135
10.
Smit
,
S.
,
Quirijn
,
E.
,
Gustavo
,
O. R.
, and
Pecnik
,
R.
,
2019
, “
Optimization of a High Expansion ORC Turbine Using a Genetic Algorithm
,”
Fifth International Seminar on ORC Power Systems
, Athens, Greece, Sept. 9–11.https://www.orc2019.com/online/proceedings/documents/143.pdf
11.
Hushmandi
,
N.
,
Fridh
,
J.
, and
Fransson
,
T.
,
2011
, “
Unsteady Forces of Rotor Blades in Full and Partial Admission Turbines
,”
ASME J. Turbomach.
,
133
(
4
), p.
041017
.10.1115/1.4002408
12.
Kalkkuhl
,
T.
,
Engelmann
,
D.
,
Harbecke
,
U.
, and
Mailach
,
R.
,
2012
, “
Numerical Analysis of Partial Admission Flow in an Industrial Steam Turbine
,”
ASME
Paper No. GT2012-68482.10.1115/GT2012-68482
13.
Bellucci
,
J.
,
Rubechini
,
F.
, and
Arnone
,
A.
,
2018
, “
Modeling Partial Admission in Control Stages of Small Steam Turbines With CFD
,”
ASME
Paper No. GT2018-76528.10.1115/GT2018-76528
14.
Berger
,
A.
,
Polklas
,
T.
,
Brunn
,
O.
, and
Joos
,
F.
,
2019
, “
Experimental Investigation on Performance of a Control Stage Turbine Under Partial Admission
,”
Proceedings of 13th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics ETC13
, Lusanne, Switzerland, Apr. 8–12, Paper No.
ETC2019-135
. 10.29008/ETC2019-135
15.
Aungier
,
R. H.
,
2006
,
Turbine Aerodynamics: Axial-Flow and Radial-Inflow Turbine Design and Analysis
,
ASME Press
,
New York
, pp.
87
88
.
16.
Alshammari
,
F.
,
Karvountzis-Kontakiotis
,
A.
,
Pesiridis
,
A.
, and
Giannakakis
,
P.
,
2018
, “
Off-Design Performance Prediction of Radial Turbines Operating With Ideal and Real Working Fluids
,”
Energy Convers. Manage.
,
171
, pp.
1430
1439
.10.1016/j.enconman.2018.06.093
17.
Peng
,
D. Y.
, and
Robinson
,
D. B.
,
1976
, “
A New Two-Constant Equation of State
,”
Ind. Eng. Chem.: Fundam.
,
15
(
1
), pp.
59
64
.10.1021/i160057a011
18.
Chung
,
T. H.
,
Ajlan
,
M.
,
Lee
,
L. L.
, and
Starling
,
K. E.
,
1988
, “
Generalized Multiparameter Correlation for Nonpolar and Polar Fluid
,”
Ind. Eng. Chem. Res.
,
27
(
4
), pp.
671
679
.10.1021/ie00076a024
19.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows, Journal of Turbomachinery
,”
AIAA
Paper No. 439.https://www.semanticscholar.org/paper/A-One-Equation-Turbulence-Model-for-Aerodynamic-Spalart/62dec143da3aecf0ad1591d37c20641543a03105
20.
Blazek
,
J.
,
2005
,
Computational Fluid Dynamics: Principles and Applications
,
Elsevier Science & Technology
,
Amsterdam, The Netherlands
.
21.
Post
,
P.
,
Sembritzky
,
M.
, and
di Mare
,
F.
,
2019
, “
Towards Scale Resolving Computations of Condensing Wet Steam Flows
,”
ASME
Paper No. GT2019-91269.10.1115/GT2019-91269
22.
Iseni
,
S.
,
Sembritzky
,
M.
,
Post
,
P.
, and
di Mare
,
F.
,
2019
, “
Numerical Analysis of the Influence of Air Humidity on a Transonic Compressor Stage
,”
International Gas Turbine Congress
, Tokyo, Japan, Nov. 17–22, Paper No.
ThAM16.1
.10.1007/s11630-019-1182-9
23.
Ameli
,
A.
,
Uusitalo
,
A.
,
Turunen-Saaresti
,
T.
, and
Backman
,
J.
,
2017
, “
Numerical Sensitivity Analysis for Supercritical CO2 Radial Turbine Performance and Flow Field
,”
Energy Procedia
,
129
, pp.
1117
1124
.10.1016/j.egypro.2017.09.233
24.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
, “NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP,” National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, MD.
25.
Mcbride
,
B. J.
,
Gordon
,
S.
, and
Reno
,
M. A.
,
1993
, “
Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species
,” NASA, Cleveland, OH, Memorandum No. 4513.
26.
Poling
,
B.
,
Prausnitz
,
J.
, and
O'Connell
,
J.
,
2001
,
The Properties of Gases and Liquids
,
McGraw-Hill
,
New York
.
27.
Suter
,
P.
, and
Traupel
,
W.
,
1959
, “Untersuchungen über den Ventilationsverlust von Turbinenrädern,” Mitteilungen aus dem Institut für thermische Turbomaschinen an der Eidgenössischen Technischen Hochschule Zürich, Switzerland.
You do not currently have access to this content.