Abstract

Lean premixed gas turbulent flames stabilized in the flow generated by an industrial swirl burner with a central bluff body are experimentally found to behave bistable. This bistable behavior, which can be triggered via a small change in some of the controlling parameters, for example, the bulk equivalence ratio, consists in a rather sudden transition of the flame from completely lifted to well attached to the bluff body. This has impact on combustion dynamics, emissions, and pressure losses. While several experimental investigations exist on this topic, numerical analysis is limited. This work is therefore also of numerical nature, with a twofold scope: (a) simulation and validation with experiments of the bistable flame behavior via computational fluid dynamics (CFD) in the form of large eddy simulation (LES) and (b) analysis of CFD results to shed light on the flame stabilization properties. LES results, in case of the lifted flame, show that the vortex core is sharply precessing at a given frequency. Phase averaging these results at the frequency of precession clearly indicates a counterintuitive and unexpected presence of reverse flow going all the way through the flame apex and the bluff body tip. The counterintuitive presence of a lifted flame is explained here in terms of the phase averaged data, which show that the flame apex is not placed at the center of the spinning reverse flow region. It is instead slightly shifted radially outward where the axial velocity recovers to low positive values of the order of the turbulent burning rate. A simple one-dimensional flame stabilization model is applied to explain this peculiar flame behavior. This model provides first an estimation of the flame radius of curvature in terms of axial velocity and turbulence quantities. This radius is therefore used to determine the total flux of reactants into the flame, given by an axial convection and radial diffusion contributions. Subsequently, the possibility of the flame positioned at the center of the vortex is excluded based on the balance between this flux and the turbulent burning rate. A clear explanation of the mechanism leading to the sudden flame jump has instead not been identified and only some hypotheses are provided.

References

1.
Escudier
,
M.
,
1988
, “
Vortex Breakdown: Observation and Explanations
,”
Prog. Aerosp. Sci.
,
25
(
2
), pp.
189
229
.10.1016/0376-0421(88)90007-3
2.
Lucca-Negro
,
O.
, and
O'Doherty
,
T.
,
2001
, “
Vortex Breakdown: A Review
,”
Prog. Energy Combust. Sci.
,
27
(
4
), pp.
431
481
.10.1016/S0360-1285(00)00022-8
3.
Keller
,
J.
,
1995
, “
On the Interpretation of Vortex Breakdown
,”
Phys. Fluids
,
7
(
7
), pp.
1695
1702
.10.1063/1.868757
4.
Benjamin
,
T. B.
,
1962
, “
Theory of the Vortex Breakdown Phenomenon
,”
J. Fluid Mech.
,
14
(
4
), pp.
593
629
.10.1017/S0022112062001482
5.
Syred
,
N.
,
Fick
,
W.
,
O'Doherty
,
T.
, and
Griffiths
,
A. J.
,
1997
, “
The Effect of Precessing Vortex Core on Combustion in a Swirl Burner
,”
Comb. Sci. Technol.
,
125
(
1–6
), pp.
139
157
.10.1080/00102209708935657
6.
Terhaar
,
S.
,
Oberleithner
,
K.
, and
Paschereit
,
C. O.
,
2015
, “
Key Parameters Governing the Precessing Vortex Core in Reacting Flows: An Experimental and Analytical Study
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3347
3354
.10.1016/j.proci.2014.07.035
7.
Biagioli
,
F.
,
2006
, “
Stabilization Mechanism of Turbulent Premixed Flames in Strongly Swirled Flows
,”
Combust. Theory Modell.
,
10
(
3
), pp.
389
412
.10.1080/13647830500448347
8.
Kiesewetter
,
M.
,
Konle
,
M.
, and
Sattelmayer
,
T.
,
2007
, “
Analysis of Combustion Induced Vortex Breakdown Driven Flame Flashback in a Premix Burner With Cylindrical Mixing Zone
,”
ASME J. Eng. Gas Turbines Power
,
129
(
4
), pp.
929
936
.10.1115/1.2747259
9.
Stöhr
,
M.
,
Oberleithner
,
K.
,
Sieber
,
M.
,
Yin
,
Z.
, and
Meier
,
W.
,
2017
, “
Experimental Study of Transient Mechanisms of Bi-Stable Flame Shape Transitions in a Swirl Combustor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
1
), p.
011503
.10.1115/1.4037724
10.
Gatti
,
M.
,
Gaudron
,
R.
,
Mirat
,
C.
,
Zimmer
,
L.
, and
Schuller
,
T.
,
2019
, “
Impact of Swirl and Bluff-Body on the Transfer Function of Premixed Flames
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5197
5204
.10.1016/j.proci.2018.06.148
11.
Steinbach
,
C.
,
Ulibarri
,
N.
,
Garay
,
M.
,
Lübcke
,
H.
,
Meeuwissen
,
T.
,
Haffner
,
K.
,
Aubry
,
J.
, and
Kodim
,
D.
,
2006
, “
Combustion Optimization for the ALSTOM GT13E2 Gas Turbine
,”
ASME
Paper No. GT2006-9043. 10.1115/GT2006-9043
12.
Paschereit
,
C. O.
,
Polifke
,
W.
,
Schuermans
,
B.
, and
Mattson
,
O.
,
1999
, “
Measurement of Transfer Matrices and Source Terms of Premixed Flames
,”
ASME
Paper No. 99-GT-133.10.1115/99-GT-133
13.
Bellucci
,
V.
,
Schuermans
,
B.
,
Nowak
,
D.
,
Flohr
,
P.
, and
Paschereit
,
O.
,
2005
, “
Thermoacoustic Modeling of a Gas Turbine Combustor Equipped With Acoustic Dampers
,”
ASME J. Turbomach.
,
127
(
2
), pp.
372
379
.10.1115/1.1791284
14.
Zimont
,
V. L.
,
2000
, “
Gas Premixed Combustion at High Turbulence. Turbulent Flame Closure Model Combustion Model
,”
Exp. Therm. Fluid Sci.
,
21
(
1–3
), pp.
179
186
.10.1016/S0894-1777(99)00069-2
15.
Goodwin
,
D. G.
,
Speth
,
R. L.
,
Moffat
,
H. K.
, and
Weber
,
B. W.
,
2018
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Version 2.2.1.10.5281/ZENODO.45206
16.
Wysocki
,
S.
,
Syed
,
K. J.
, and
Biagioli
,
F.
,
2019
, “
Frequency Response of Turbulent Partially Premixed Flame Stabilized in Free-Standing Vortex Breakdown
,”
Combust. Sci. Technol.
,
191
(
5–6
), pp.
797
832
.10.1080/00102202.2019.1573225
17.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.10.1146/annurev.fl.25.010193.002543
18.
Escudier
,
M.
, and
Keller
,
J. J.
,
1985
, “
Recirculation in Swirling Flow: A Manifestation of Vortex Breakdown
,”
AIAA J.
,
23
(
1
), pp.
111
116
.10.2514/3.8878
19.
Rusak
,
Z.
,
Wang
,
S.
,
Xu
,
L.
, and
Taylor
,
S.
,
2012
, “
On the Global Nonlinear Stability of a Near-Critical Swirling Flow in a Long Finite-Length Pipe and the Path to Vortex Breakdown
,”
J. Fluid Mech.
,
712
, pp.
295
326
.10.1017/jfm.2012.420
20.
Karlis
,
E.
,
Liu
,
Y.
,
Hardalupas
,
Y.
, and
Taylor
,
A. M.
,
2020
, “
Extinction Strain Rate Suppression of the Precessing Vortex Core in a Swirl Stabilised Combustor and Consequences for Thermoacoustic Oscillations
,”
Combust. Flame
,
211
, pp.
229
252
.10.1016/j.combustflame.2019.09.031
21.
Douglas
,
C.
,
Lim
,
J.
,
Smith
,
T.
,
Emerson
,
B.
,
Lieuwen
,
T.
,
Jiang
,
N.
,
Fugger
,
C.
,
Yi
,
T.
,
Felver
,
J.
,
Roy
,
S.
, and
Gord
,
J.
,
2019
, “
Measurements of Periodic Reynolds Stress Oscillations in a Forced Turbulent Premixed Swirling Flame
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011001
.10.1115/1.4040686
22.
Hussain
,
A. K. M. F.
, and
Reynolds
,
W. C.
,
1970
, “
The Mechanics of an Organized Wave in Turbulent Shear Flow
,”
J. Fluid Mech.
,
41
(
2
), pp.
241
258
.10.1017/S0022112070000605
23.
Stöhr
,
M.
,
Boxx
,
I.
,
Carter
,
C.
, and
Meier
,
W.
,
2011
, “
Dynamics of Lean Blowout of a Swirl-Stabilized Flame in a Gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2953
2960
.10.1016/j.proci.2010.06.103
You do not currently have access to this content.