Abstract

In choosing the lubricating oil for a gas turbine system, properties such as viscosity, viscosity index, corrosion prevention, and thermal stability are chosen to optimize turbine longevity and efficiency. Another property that needs to be considered is the lubricant's reactivity, as the lubricant's ability to resist combustion during turbine operation is highly desirable. In evaluating a method to define reactivity, the extremely low vapor pressure of these lubricants makes conventional vaporization by heating impractical. To this end, a new experiment was designed and tested to evaluate the reactivity of lubricating oils using an existing shock-tube facility at Texas A&M University equipped with an automotive fuel injector. This experiment disperses a premeasured amount of lubricant into a region of high-temperature air to study auto-ignition. To ensure proper dispersal, a laser extinction diagnostic was used to detect the lubricant particles behind the reflected shock as they are dispersed and vaporized. An OH* chemiluminescence diagnostic was used to determine ignition delay time. Using this method, various 32-, 36-, and 46-weight lubricants identified as widely used in the gas turbine industry were tested. Experiments were conducted in postreflected shock conditions around 1370 K (2006 °F) and 1.2 atm, where ignition delay time, peak OH* emission, and time-to-peak values were recorded and compared. Ignition was observed for all but one of the lubricants at these conditions, and mild to strong ignition was observed for the other lubricants with varying ignition delay times.

References

1.
Kuchta
,
J. M.
, and
Cato
,
R. J.
,
1968
, “Review of Ignition and Flammability Properties of Lubricants,” Bureau of Mines, Wright-Patterson Air Force Base, OH, Report No.
AFAPL-TR-67-126
.https://apps.dtic.mil/dtic/tr/fulltext/u2/665121.pdf
2.
Feng
,
D.
,
Buresheid
,
K.
,
Zhao
,
H.
,
Wei
,
H.
, and
Chen
,
C.
,
2019
, “
Investigation of Lubricant Induced Pre-Ignition and Knocking Combustion in an Optical Spark Ignition Engine
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4901
4910
.10.1016/j.proci.2018.07.061
3.
Haas
,
F. M.
,
Won
,
S. H.
,
Dryer
,
F. L.
, and
Pera
,
C.
,
2019
, “
Lube Oil Chemistry Influences on Autoignition as Measured in an Ignition Quality Tester
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4645
4654
.10.1016/j.proci.2018.06.165
4.
Kuti
,
O. A.
,
Yang
,
S. Y.
,
Hourani
,
N.
,
Naser
,
N.
,
Roberts
,
W. L.
,
Chung
,
S. H.
, and
Sarathy
,
S. M.
,
2015
, “
A Fundamental Investigation Into the Relationship Between Lubricant Composition and Fuel Ignition Quality
,”
Fuel
,
160
, pp.
605
613
.10.1016/j.fuel.2015.08.026
5.
Kassai
,
M.
,
Hashimoto
,
H.
,
Shiraishi
,
T.
,
Teraji
,
A.
, and
Noda
,
T.
,
2015
, “
Mechanism Analysis on LSPI Occurrence in Boosted SI Engines
,”
SAE
Paper No. 2015-01-1867. 10.4271/2015-01-1867
6.
Kassai
,
M.
,
Torii
,
K.
,
Shiraishi
,
T.
,
Noda
,
T.
,
Goh
,
T. K.
,
Wilbrand
,
K.
,
Wakefield
,
S.
,
Healy
,
A.
,
Doyle
,
D.
, and
Cracknell
,
R.
,
2016
, “
Research on the Effect of Lubricant Oil and Fuel Properties on LSPI Occurrence in Boosted SI Engines
,”
SAE
Paper No. 2016-01-2292. 10.4271/2016-01-2292
7.
Kim
,
C. J.
,
Choi
,
H. H.
, and
Sohn
,
C. H.
,
2011
, “
Auto-Ignition of Lubricating Oil Working at High Pressures in a Compressor for an Air Conditioner
,”
J. Hazard. Mater.
,
185
(
1
), pp.
416
422
.10.1016/j.jhazmat.2010.09.049
8.
Rosenlieb
,
J.
,
1973
, “Aircraft Engine Sump Fire Mitigation,” NASA, Washington, DC, Report No.
NASA-TR-121158
.https://ntrs.nasa.gov/citations/19730014164
9.
Loomis
,
W. R.
,
1976
, “
Aircraft Engine Sump-Fire Studies
,” NASA Aircraft Safety and Operating Problems Conference, Hampton, VA, Oct. 18–20, Paper No.
NASA SP-416
, pp.
443
456
.https://ntrs.nasa.gov/citations/19770011160
10.
Willenborg
,
K.
,
Busam
,
S.
,
Roßkamp
,
H.
, and
Wittig
,
S.
,
2002
, “
Experimental Studies of the Boundary Conditions Leading to Oil Fire in the Bearing Chamber and in the Secondary Air System of Aeroengines
,”
ASME
Paper No. GT2002-30241.10.1115/GT2002-30241
11.
Peyton-Bruhl
,
A.
,
Belton
,
D.
,
Walker
,
A. D.
,
Snowsill
,
G.
, and
Young
,
C.
,
2019
, “
Development of a CFD Based Methodology for Predicting Oil Auto-Ignition in Gas Turbine Bearing Chambers
,”
ASME
Paper No. GT2019-92050. 10.1115/GT2019-92050
12.
Snee
,
T.
,
Braddock
,
R.
, and
Allen
,
J.
,
2016
, “
Spontaneous Ignition of Gas Turbine Lubricants at Temperatures Below Their Standard Auto-Ignition Temperatures
,” Health and Safety Executive Research, Buxton, UK, Report No.
RR1076
.https://www.hse.gov.uk/research/rrhtm/rr1076.htm
13.
Siregar
,
M. A. M.
, and
Nugroho
,
Y. S.
,
2014
, “
Study on Auto-Ignition Behavior of Lubricating Oil in a Cone Calorimeter
,”
Appl. Mech. Mater.
,
493
, pp.
161
166
.10.4028/www.scientific.net/AMM.493.161
14.
Cooper
,
S. P.
,
Mulvihill
,
C. R.
,
Mathieu
,
O.
,
Petersen
,
E. L.
,
Crofton
,
M. W.
, and
Lam
,
K. Y.
,
2020
, “
CH Kinetics Measurements and Their Importance for Modeling Prompt NOx Formation in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
142
(
4
), p.
041007
.10.1115/1.4044468
15.
Rebagay
,
R. L.
,
2017
, “
Heated Shock Tube Design and Characterization for Liquid Fuel Combustion Experiments
,”
Master of Science thesis
,
Texas A&M University
,
College Station, TX
.http://hdl.handle.net/1969.1/166024
16.
Alturaifi
,
S. A.
,
Rebagay
,
R. L.
,
Mathieu
,
O.
,
Guo
,
B.
, and
Petersen
,
E. L.
,
2019
, “
A Shock-Tube Autoignition Study of Jet, Rocket, and Diesel Fuels
,”
Energy Fuels
,
33
(
3
), pp.
2516
2525
.10.1021/acs.energyfuels.8b04290
17.
Petersen
,
E.
,
Bhosale
,
S.
,
El Zahab
,
Z.
,
Mack
,
P.
, and
Smith
,
S.
,
2003
, “
A Shock Tube Facility for Spray-Combustion Studies and Reacting-Flow Visualization
,”
AIAA Paper No. 2003-2881.
18.
Nativel
,
D.
,
Cooper
,
S. P.
,
Lipkowicz
,
T.
,
Fikri
,
M.
,
Petersen
,
E. L.
, and
Schulz
,
C.
,
2020
, “
Impact of Shock Tube Facility-Dependent Effects on Incident- and Reflected-Shock Conditions Over a Wide Range of Pressures and Mach Numbers
,”
Combust. Flame
,
217
, pp.
200
211
.10.1016/j.combustflame.2020.03.023
19.
Petersen
,
E. L.
,
2009
, “
Interpreting Endwall and Sidewall Measurements in Shock-Tube Ignition Studies
,”
Combust. Sci. Technol.
,
181
(
9
), pp.
1123
1144
.10.1080/00102200902973323
20.
Mathieu
,
O.
,
Pinzón
,
L. T.
,
Atherley
,
T. M.
,
Mulvihill
,
C. R.
,
Schoel
,
I.
, and
Petersen
,
E. L.
,
2019
, “
Experimental Study of Ethanol Oxidation Behind Reflected Shock Waves: Ignition Delay Time and H2O Laser-Absorption Measurements
,”
Combust. Flame
,
208
, pp.
313
326
.10.1016/j.combustflame.2019.07.005
You do not currently have access to this content.