Abstract

Gas foil bearings (GFBs) are suitable for high speed and temperature applications where conventional lubricated bearing solution are not feasible. This requires the prediction of bearing temperatures and thus a thermal model considering the heat generation and heat flow paths in the bearing. The effects of two different bump foil stiffness (Iordanoff, I., 1999, “Analysis of an Aerodynamic Compliant Foil Thrust Bearing: Method for a Rapid Design,” ASME J. Tribol., 121(4), pp. 816–822; Le Lez, S., Arghir, M., and Frene, J., 2007, “A New Bump-Type Foil Bearing Structure Analytical Model,” ASME J. Eng. Gas Turbines Power, 129(4), pp. 1047–1057.) and heat transfer models (a simplified and a detailed one) are presented in respect to measured temperatures from literature (Radil, K., and Zeszotek, M., 2004, “An Experimental Investigation Into the Temperature Profile of a Compliant Foil Air Bearing,” Tribol. Trans., 47(4), pp. 470–479; Sim, K., and Kim, T. H., 2012, “Thermohydrodynamic Analysis of Bump-Type Gas Foil Bearings Using Bump Thermal Contact and Inlet Flow Mixing Models,” Tribol. Int., 48, pp. 137–148). The comparison is drawn over a wide range of operational conditions as well as measuring positions, which in such detail has not been shown before. While good agreement is found for some of the conditions and positions, only reasonable agreement is found for others. The deviations and difficulties in validating a thermal model against experiments are highlighted in a discussion about various temperature influencing parameters, especially concerning the change of clearance during operation. In conclusion, it is found that the models are able to predict temperatures reasonably well, but require delicate fine-tuning to achieve these results. Finally, the impact of temperature distribution on the maximum load capacity is evaluated by comparing predictions between an isothermal model and one including thermal effects.

References

1.
Agrawal
,
G. L.
,
1997
, “
Foil Air/Gas Bearing Technology—An Overview
,”
ASME
Paper No. 97-GT-347. 10.1115/97-GT-347
2.
Dykas
,
B.
, and
Howard
,
S. A.
,
2004
, “
Journal Design Considerations for Turbomachine Shafts Supported on Foil Air Bearings
,”
Tribol. Trans.
,
47
(
4
), pp.
508
516
.10.1080/05698190490493391
3.
Salehi
,
M.
,
Swanson
,
E.
, and
Heshmat
,
H.
,
2001
, “
Thermal Features of Compliant Foil Bearings—Theory and Experiments
,”
ASME J. Tribol.
,
123
(
3
), pp.
566
571
.10.1115/1.1308038
4.
Pinkus
,
O.
, and
Bupara
,
S. S.
,
1979
, “
Adiabatic Solutions for Finite Journal Bearings
,”
ASME J. Lubr. Technol.
,
101
(
4
), pp.
492
496
.10.1115/1.3453400
5.
Peng
,
Z.-C.
, and
Khonsari
,
M. M.
,
2006
, “
A Thermohydrodynamic Analysis of Foil Journal Bearings
,”
ASME J. Tribol.
,
128
(
3
), pp.
534
541
.10.1115/1.2197526
6.
Knight
,
J. D.
, and
Barrett
,
L. E.
,
1988
, “
Analysis of Tilting Pad Journal Bearings With Heat Transfer Effects
,”
ASME J. Tribol.
,
110
(
1
), pp.
128
133
.10.1115/1.3261550
7.
Sim
,
K.
, and
Kim
,
D.
,
2008
, “
Thermohydrodynamic Analysis of Compliant Flexure Pivot Tilting Pad Gas Bearings
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), p.
032502
.10.1115/1.2836616
8.
San Andrés
,
L.
, and
Kim
,
T. H.
,
2010
, “
Thermohydrodynamic Analysis of Bump Type Gas Foil Bearings: A Model Anchored to Test Data
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
042504
.10.1115/1.3159386
9.
Radil
,
K.
, and
Zeszotek
,
M.
,
2004
, “
An Experimental Investigation Into the Temperature Profile of a Compliant Foil Air Bearing
,”
Tribol. Trans.
,
47
(
4
), pp.
470
479
.10.1080/05698190490501995
10.
Feng
,
K.
, and
Kaneko
,
S.
,
2009
, “
Thermohydrodynamic Study of Multiwound Foil Bearing Using Lobatto Point Quadrature
,”
ASME J. Tribol.
,
131
(
2
), p.
021702
.10.1115/1.3070579
11.
Feng
,
K.
, and
Kaneko
,
S.
,
2013
, “
A Thermohydrodynamic Sparse Mesh Model of Bump-Type Foil Bearings
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
022501
.10.1115/1.4007728
12.
Sim
,
K.
, and
Kim
,
T. H.
,
2012
, “
Thermohydrodynamic Analysis of Bump-Type Gas Foil Bearings Using Bump Thermal Contact and Inlet Flow Mixing Models
,”
Tribol. Int.
,
48
, pp.
137
148
.10.1016/j.triboint.2011.11.017
13.
Kim
,
T. H.
,
Song
,
J. W.
,
Lee
,
Y.-B.
, and
Sim
,
K.
,
2012
, “
Thermal Performance Measurement of a Bump Type Gas Foil Bearing Floating on a Hollow Shaft for Increasing Rotating Speed and Static Load
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
024501
.10.1115/1.4004401
14.
Nelder
,
J. A.
, and
Mead
,
R.
,
1965
, “
A Simplex Method for Function Minimization
,”
Comput. J.
,
7
(
4
), pp.
308
313
.10.1093/comjnl/7.4.308
15.
Ansys
, Workbench, 2017, Ansys® Academic Research Mechanical, Release 18.1, Ansys, Canonsburg, PA.
16.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
,
1987
,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
17.
Morosi
,
S.
, and
Santos
,
I. F.
,
2011
, “
From Hybrid to Actively-Controlled Gas Lubricated Bearings—Theory and Experiment
,” DCAMM, DTU Mechanical Engineering, Lyngby, Denmark, Report No.
S137
.https://orbit.dtu.dk/en/publications/from-hybrid-to-actively-controlled-gas-lubricated-bearings-theory
18.
Verein Deutscher Ingenieure,
2013
,
VDI-Wärmeatlas: Mit 320 Tabellen
, VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen, eds.,
Springer Vieweg
,
Berlin
.
19.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publ. Co
.,
New York
.
20.
Kedia
,
R.
,
1997
, “
An Investigation of Velocity and Temperature Fields in Taylor-Couette Flows
,”
Ph.D. thesis
, California Institute of Technology, Pasadena, CA.https://resolver.caltech.edu/CaltechETD:etd-01102008-131126
21.
Gersten
,
K.
, and
Herwig
,
H.
,
2014
,
Strömungsmechanik: Grundlagen Der Impuls-, Wärme- Und Stoffübertragung Aus Asymptotischer Sicht
,
Vieweg & Teubner
,
Wiesbaden, Germany
.
22.
Lehn
,
A.
,
Mahner
,
M.
, and
Schweizer
,
B.
,
2017
, “
A Contribution to the Thermal Modeling of Bump Type Air Foil Bearings: Analysis of the Thermal Resistance of Bump Foils
,”
ASME J. Tribol.
,
139
(
6
), p.
061702
.10.1115/1.4036631
23.
Lee
,
D.
, and
Kim
,
D.
,
2010
, “
Thermohydrodynamic Analyses of Bump Air Foil Bearings With Detailed Thermal Model of Foil Structures and Rotor
,”
ASME J. Tribol.
,
132
(
2
), p.
021704
.10.1115/1.4001014
24.
Churchill
,
S. W.
, and
Chu
,
H. H. S.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Horizontal Cylinder
,”
Int. J. Heat Mass Transfer
,
18
(
9
), pp.
1049
1053
.10.1016/0017-9310(75)90222-7
25.
Yovanovich
,
M. M.
, and
Jafarpur
,
K.
,
1993
, “
Bounds on Laminar Natural Convection From Isothermal Disks and Finite Plates of Arbitrary Shape for All Orientations and Prandtl Numbers
,”
ASME Winter Annual Meeting
, New Orleans, LA, Nov. 28–Dec. 3, HTD-Vol. 264, p. 93.http://www.mhtl.uwaterloo.ca/old/paperlib/papers/conv/natural/disks_plates/abstract9.html
26.
Geropp
,
D.
,
1969
, “
Der Turbulente Wärmeübergang Am Rotierenden Zylinder
,”
Ing. Arch.
,
38
(
4–5
), pp.
195
203
.10.1007/BF00536164
27.
Dorfman
,
L. A.
,
1963
,
Hydrodynamic Resistance and the Heat Loss of Rotating Solids
,
Oliver & Boyd
,
Edinburgh, UK
.
28.
Theodorsen
,
T.
, and
Regier
,
A.
,
1944
, “
Experiments on Drag of Revolving Disks, Cylinders, and Streamline Rods at High Speeds
,” National Advisory Committee for Aeronautics. Langley Aeronautical Lab., Langley Field, VA, Report No.
NACA-TR-793
.https://digital.library.unt.edu/ark:/67531/metadc64956/
29.
Cardone
,
G.
,
Astarita
,
T.
, and
Carlomagno
,
G. M.
,
1997
, “
Heat Transfer Measurements on a Rotating Disk
,”
Int. J. Rotating Mach.
,
3
(
1
), pp.
1
9
.10.1155/S1023621X97000018
30.
Seghir-Ouali
,
S.
,
Saury
,
D.
,
Harmand
,
S.
,
Phillipart
,
O.
, and
Laloy
,
D.
,
2006
, “
Convective Heat Transfer Inside a Rotating Cylinder With an Axial Air Flow
,”
Int. J. Therm. Sci.
,
45
(
12
), pp.
1166
1178
.10.1016/j.ijthermalsci.2006.01.017
31.
Ruscitto
,
D.
,
Mc Cormick
,
J.
, and
Gray
,
S.
,
1978
, “
Hydrodynamic Air Lubricated Compliant Surface Bearing for an Automotive Gas Turbine Engine—1: Journal Bearing Performance
,” Mechanical Technology, Inc., Latham, NY, Report Nos.
NASA-CR-135368, CONS/9427-1
.https://www.osti.gov/biblio/7095892
32.
Iordanoff
,
I.
,
1999
, “
Analysis of an Aerodynamic Compliant Foil Thrust Bearing: Method for a Rapid Design
,”
ASME J. Tribol.
,
121
(
4
), pp.
816
822
.10.1115/1.2834140
33.
Le Lez
,
S.
,
Arghir
,
M.
, and
Frene
,
J.
,
2007
, “
A New Bump-Type Foil Bearing Structure Analytical Model
,”
ASME J. Eng. Gas Turbines Power
,
129
(
4
), pp.
1047
1057
.10.1115/1.2747638
34.
Dellacorte
,
C.
,
Lukaszewicz
,
V.
,
Valco
,
M. J.
,
Radil
,
K. C.
, and
Heshmat
,
H.
,
2000
, “
Performance and Durability of High Temperature Foil Air Bearings for Oil-Free Turbomachinery
,”
Tribol. Trans.
,
43
(
4
), pp.
774
780
.10.1080/10402000008982407
35.
Arghir
,
M.
, and
Benchekroun
,
O.
,
2019
, “
A New Structural Bump Foil Model With Application From Start-Up to Full Operating Conditions
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
101017
.10.1115/1.4044685
36.
Arghir
,
M.
, and
Benchekroun
,
O.
,
2019
, “
A Simplified Structural Model of Bump-Type Foil Bearings Based on Contact Mechanics Including Gaps and Friction
,”
Tribol. Int.
,
134
, pp.
129
144
.10.1016/j.triboint.2019.01.038
You do not currently have access to this content.