Abstract

Renewable energy penetration is growing, due to the target of greenhouse-gas-emission reduction, even though fossil fuel-based technologies are still necessary in the current energy market scenario to provide reliable back-up power to stabilize the grid. Nevertheless, currently, an investment in such a kind of power plant might not be profitable enough, since some energy policies have led to a general decrease of both the average single national price of electricity (PUN) and its variability; moreover, in several countries, negative prices are reached on some sunny or windy days. Within this context, combined heat and power (CHP) systems appear not just as a fuel-efficient way to fulfill local thermal demand but also as a sustainable way to maintain installed capacity able to support electricity grid reliability. Innovative solutions to increase both the efficiency and flexibility of those power plants, as well as careful evaluations of the economic context, are essential to ensure the sustainability of the economic investment in a fast-paced changing energy field. This study aims to evaluate the economic viability and environmental impact of an integrated solution of a cogenerative combined cycle gas turbine power plant with a flue gas condensing heat pump. Considering capital expenditure, heat demand, electricity price, and its fluctuations during the whole system life, the sustainability of the investment is evaluated taking into account the uncertainties of economic scenarios and benchmarked against the integration of a cogenerative combined cycle gas turbine power plant with a heat-only boiler (HOB).

References

1.
European Commission
,
2014
, “
A Policy Framework for Climate and Energy in the Period From 2020 to 2030
,” European Commission, Brussels, Belgium.
2.
Eurostat,
2018
,
Energy, Transport and Environment Indicators
, 2018 ed.,
Eurostat
, Imprimeries Bietlot Frères, Belgium.
3.
European Commission, 2011,
Energy Roadmap 2050
,” European Commission, Luxembourg.
4.
Minutillo
,
M.
,
Perna
,
A.
, and
Sorce
,
A.
,
2019
, “
Combined Hydrogen, Heat and Electricity Generation Via Biogas Reforming: Energy and Economic Assessments
,”
Int. J. Hydrogen Energy
,
44
(
43
), pp.
23880
–238
98
.10.1016/j.ijhydene.2019.07.105
5.
Bellotti
,
D.
,
Sorce
,
A.
,
Rivarolo
,
M.
, and
Magistri
,
L.
,
2019
, “
Techno-Economic Analysis for the Integration of a Power to Fuel System With a CCS Coal Power Plant
,”
J. CO2 Util.
,
33
, pp.
262
–2
72
.10.1016/j.jcou.2019.05.019
6.
Bellotti
,
D.
,
Cassettari
,
L.
,
Mosca
,
M.
, and
Magistri
,
L.
,
2019
, “
RSM Approach for Stochastic Sensitivity Analysis of the Economic Sustainability of a Methanol Production Plant Using Renewable Energy Sources
,”
J. Clean. Prod.
,
240
, p.
117947
.10.1016/j.jclepro.2019.117947
7.
Gkoutzamanis
,
V.
,
Chatziangelidou
,
A.
,
Efstathiadis
,
T.
,
Kalfas
,
A.
,
Traverso
,
A.
, and
Chiu
,
J.
,
2019
, “
Thermal Energy Storage for Gas Turbine Power Augmentation
,”
J. Global Power Propul. Soc.
,
3
, pp.
592
608
.10.33737/jgpps/110254
8.
Lamberti
,
T.
,
Sorce
,
A.
,
Di Fresco
,
L.
, and
Barberis
,
S.
,
2015
, “
Smart Port: Exploiting Renewable Energy and Storage Potential of Moored Boats
,”
MTS/IEEE Oceans 2015—Genova: Discovering Sustainable Ocean Energy for a New World
, Genoa, Italy, May 18-21, pp.
1
3
.10.1109/OCEANS-Genova.2015.7271376
9.
Rossi
,
I.
,
Sorce
,
A.
, and
Traverso
,
A.
,
2017
, “
Gas Turbine Combined Cycle Start-Up and Stress Evaluation: A Simplified Dynamic Approach
,”
Appl. Energy
,
190
, pp.
880
–8
90
.10.1016/j.apenergy.2016.12.141
10.
Sipilä
,
K.
,
2016
,
Advanced District Heating and Cooling (DHC) Systems
, Woodhead Publishing, Cambridge, UK.
11.
Lund
,
R.
, and
Persson
,
U.
,
2016
, “
Mapping of Potential Heat Sources for Heat Pumps for District Heating in Denmark
,”
Energy
,
110
, pp.
129
–1
38
.10.1016/j.energy.2015.12.127
12.
Levihn
,
F.
,
2017
, “
CHP and Heat Pumps to Balance Renewable Power Production: Lessons From the District Heating Network in Stockholm
,”
Energy
,
137
, pp.
670
–67
8
.10.1016/j.energy.2017.01.118
13.
Ommen
,
T.
,
Markussen
,
W. B.
, and
Elmegaard
,
B.
,
2014
, “
Heat Pumps in Combined Heat and Power Systems
,”
Energy
,
76
, pp.
989
1000
.10.1016/j.energy.2014.09.016
14.
Chen
,
Q.
,
Finney
,
K.
,
Li
,
H.
,
Zhang
,
X.
,
Zhou
,
J.
,
Sharifi
,
V.
, and
Swithenbank
,
J.
,.
2012
, “
Condensing Boiler Applications in the Process Industry
,”
Appl. Energy
,
89
(
1
), pp.
30
–3
6
.10.1016/j.apenergy.2010.11.020
15.
Hebenstreit
,
B.
,
Schnetzinger
,
R.
,
Ohnmacht
,
R.
,
Höftberger
,
E.
,
Lundgren
,
J.
,
Haslinger
,
W.
, and
Toffolo
,
A.
,
2014
, “
Techno-Economic Study of a Heat Pump Enhanced Flue Gas Heat Recovery for Biomass Boilers
,”
Biomass Bioenergy
, 71, pp.
12
22
.10.1016/j.biombioe.2014.01.048
16.
Li
,
Y.
,
Yan
,
M.
,
Zhang
,
L.
,
Chen
,
G.
,
Cui
,
L.
,
Song
,
Z.
,
Chang
,
J.
, and
Ma
,
C.
,.
2016
, “
Method of Flash Evaporation and Condensation—Heat Pump for Deep ooling of Coal-Fired Power Plant Flue Gas: Latent Heat and Water Recovery
,”
Appl. Energy
,
172
, pp.
107
–1
17
.10.1016/j.apenergy.2016.03.017
17.
Qu
,
M.
,
Abdelaziz
,
O.
, and
Yin
,
H.
,
2014
, “
New Configurations of a Heat Recovery Absorption Heat Pump Integrated With a Natural Gas Boiler for Boiler Efficiency Improvement
,”
Energy Convers. Manag.
,
87
, pp.
175
–1
84
.10.1016/j.enconman.2014.06.083
18.
Danish Energy Agency
,
2018
, “
Technology Data for Energy Plants for Electricity and District Heating Generation
,” Danish Energy Agency, Esbjerg, Denmark.
19.
Molyneaux
,
A.
,
Leyland
,
G.
, and
Favrat
,
D.
,
2010
, “
Environomic Multi-Objective Optimisation of a District Heating Network Considering Centralized and Decentralized Heat Pumps
,”
Energy
,
35
(
2
), pp.
751
–75
8
.10.1016/j.energy.2009.09.028
20.
Cassettari
,
L.
,
Mosca
,
R.
, and
Revetria
,
R.
,
2012
, “
Monte Carlo Simulation Models Evolving in Replicated Runs: A Methodology to Choose the Optimal Experimental Sample Size
,”
Math. Probl. Eng.
,
2012
, pp.
1
6
.10.1155/2012/463873
21.
Lund
,
H.
,
Werner
,
S.
,
Wiltshire
,
R.
,
Svendsen
,
S.
,
Thorsen
,
J. E.
,
Hvelplund
,
F.
, and
Mathiesen
,
B. V.
,
2014
, “
4th Generation District Heating (4GDH) Integrating Smart Thermal Grids Into Future Sustainable Energy Systems
,”
Energy
,
68
, pp.
1
11
.10.1016/j.energy.2014.02.089
22.
Sorce
,
A.
,
Giugno
,
A.
,
Marino
,
D.
,
Piola
,
S.
, and
Guedez
,
R.
,
2019
, “
Analysis of a Combined Cycle Exploiting Inlet Conditioning Technologies for Power Modulation
,”
ASME
Paper No. GT2019-91541.10.1115/GT2019-91541
23.
Vannoni
,
A.
,
Sorce
,
A.
,
Bosser
,
S.
, and
Buddenberg
,
T.
,
2019
, “
Heat Recovery From Combined Cycle Power Plants for Heat Pumps
,”
E3S Web Conf.
,
113
, p.
01011
.10.1051/e3sconf/201911301011
24.
Friotherm
, 2021, “
Uniturbo 50FY—Centrifugal Compressor for Large Scale Refrigeration Plants and Heat Pumps
,” Friotherm, Frauenfeld, Switzerland, accessed Jan. 25, 2021, https://www.friotherm.com/wp-content/uploads/2017/12/turbo50fy_uk_g008.pdf
25.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
, 53(6), pp.
2498
2508
.10.1021/ie4033999
26.
American Society of Heating, Refrigerating and Air-Conditioning Engineers
,
1997
, 1997 ASHRAE Handbook: Fundamentals,
ASHRAE
, Atlanta, GA.
27.
Satyavada
,
H.
, and
Baldi
,
S.
,
2016
, “
A Novel Modelling Approach for Condensing Boilers Based on Hybrid Dynamical Systems
,”
Machines
,
4
(
2
), p.
10
.10.3390/machines4020010
28.
Petters
,
M. S.
,
Timmerhaus
,
K. D.
, and
West
,
E. R.
,
2002
,
Plant Design and Economics for Chemical Engineers
,
McGraw-Hill Education
, New York.
29.
Capros
,
P.
,
Vita
,
A. D.
,
Tasios
,
N.
,
Siskos
,
P.
,
Kannavou
,
M.
,
Petropoulos
,
A.
, Evangelopoulou, S., Zampara, M., and Papadopoulos, D.,
2016
, “
EU Reference Scenario 2016—A Policy Framework for Climate and Energy in the Period From 2020 to 2030
,” EU Reference Scenario, European Commission, Luxembourg.
30.
GSE - Gestore Servizi Energetici
,
2016
, “
Assessment of the National and Regional Potential for the Application of High-Efficiency Cogeneration and Efficient District Heating
,”
Report.
31.
Autorità Garante della Concorrenza e del Mercato
,
2014
, “
Indagine Conoscitiva Sul Settore Del Teleriscaldamento
,” Autorità Garante della Concorrenza e del Mercato, Rome, Italy.
32.
Li
,
H.
,
Song
,
J.
,
Sun
,
Q.
,
Wallin
,
F.
, and
Zhang
,
Q.
,
2019
, “
A Dynamic Price Model Based on Levelized Cost for District Heating
,”
Energy, Ecol. Environ.
,
4
(
1
), pp.
15
25
.10.1007/s40974-019-00109-6
33.
Gestore Mercati Energetici,
2018
, “Dati Storici Mercati,” Gestore Mercati Energetici, Rome, Italy.
34.
Ministero dell'ambiente e della tutela del territorio e del mare
,
2019
, “Decreto Legislativo n.30 del 2013, Tabella allegata dei parametri standard nazionali per il monitoraggio e la comunicazione dei gas ad effetto serra,” ISPRA, accessed Jan. 25, 2021, https://www.minambiente.it/sites/default/files/archivio/allegati/emission_trading/tabella_coefficienti_standard_nazionali_11022019.pdf
35.
TERNA,
2018
, “Dati statistici sull'energia elettrica in Italia, TERNA, Rome, Italy.
36.
Fisher
,
R. A.
,
1922
, “
On the Mathematical Foundations of Theoretical Statistics
,”
Philos. Trans. R. Soc. A
, 222, pp.
309
368
.10.1098/rsta.1922.0009
37.
Ghanem
,
R.
,
Owhadi
,
H.
, and
Higdon
,
D.
,
2017
,
Handbook of Uncertainty Quantification
, Springer,
Berlin
.
38.
European Commission
,
2016
, “
EU Reference Scenario 2016—Energy, Transport and GHG Emissions—Trends to 2050
,” European Commission, Luxembourg.
39.
Vannoni
,
A.
,
Giugno
,
A.
, and
Sorce
,
A.
, “
Integration of a Flue Gas Condensing Heat Pump Within a Combined Cycle: Thermodynamic, Environmental and Market Assessment
,”
Appl. Therm. Eng.
, 184, p.
116276
.10.1016/j.applthermaleng.2020.116276
You do not currently have access to this content.