Abstract

The effects of partial premixing on a reacting jet-in-crossflow is investigated in a five atmosphere axially staged combustor at stationary gas turbine relevant conditions. The facility consists of a dump style headend burner that provides a crossflow with a quasi-uniform velocity and temperature profile to the axial stage to isolate the effects of the jet-in-crossflow. The headend burner is run with methane and air at a lean equivalence ratio to match industry emission standards. For this work, the total air to the headend and axial stage is kept constant, and fuel is split between the headend and axial stage to represent different gas turbine loading conditions. For the cases analyzed, the fuel split to the axial stage went up to 25%. The axial stage consists of an optically accessible test section with a coaxial injector that provides variability to how long the methane and air can mix before entering the facility. Three different premixed levels are studied: fully premixed, nonpremixed, and partially premixed. The flow-field characteristics of the reacting jet-in-crossflow are analyzed using particle image velocimetry (PIV), and flame behavior is quantified by employing CH* chemiluminescence. NO measurements are made at the exit of the facility using a Horiba emissions analyzer. Two different flames are observed: flames that burn in the leeward recirculation region and flames that burn at the core of the jet.

References

1.
Berkley
,
D.
,
1996
, “
Dry Low NOx Combustion Systems for GE Heavy-Duty Gas Turbines
,”
ASME
Paper No. 96-GT-27
. 10.1115/96-GT-27
2.
Myers
,
G.
,
Tegel
,
D.
,
Feigl
,
M.
,
Setzer
,
F.
, and
Tuthill
,
R.
,
2003
, “
Dry Low Emissions for the ‘H’ Heavy-Duty Industrial Gas Turbines: Full Scale Combustion System Rig Test Results
,”
ASME
Paper No. GT2003-38193
. 10.1115/GT2003-38193
3.
Vandervort
,
C.
,
2000
, “
9 Ppm NOx/CO Combustion System for “F” Class Industrial Gas Turbines
,”
ASME
Paper No. 2000-GT-0086
. 10.1115/2000-GT-0086
4.
York
,
W.
,
Romig
,
R.
,
Hughes
,
M.
,
Simons
,
D.
, and
Citeno
,
J.
,
2015
, “
Premixed Pilot Flames for Improved Emissions, and Flexibility in a Heavy Duty Gas Turbine Combustion System
,”
ASME
Paper No. GT2015-44102
. 10.1115/GT2015-44102
5.
Dusing
,
K.
,
Ciani
,
A.
,
Benz
,
U.
,
Eroglu
,
A.
, and
Knapp
,
K.
,
2013
, “
Development of GT24 and GT26 (Upgrades 2011) Reheat Combustors Achieving Reduced Emission & Increased Fuel Flexibility
,”
ASME
Paper No. GT2013-95437
. 10.1115/GT2013-95437
6.
Hasan
,
K.
,
Natarajan
,
J.
,
Narra
,
V.
,
Cai
,
J.
,
Rao
,
S.
,
Kegley
,
J.
, and
Citeno
,
J.
,
2017
, “
Staged Combustion System for Improved Emissions Operability & Flexibility for 7HA Class Heavy Duty Gas Turbine Engine
,”
ASME
Paper No GT2017-63998
.10.1115/GT2017-63998
7.
Lamont
,
W.
,
Roa
,
M.
,
Meyer
,
S.
, and
Lucht
,
R.
,
2012
, “
Emission Measurements and CH* Chemiluminescence of a Staged Combustion Rig for Stationary Gas Turbine Applications
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
081502
.10.1115/1.4006604
8.
Roa
,
M.
,
Lamont
,
W.
,
Meyer
,
S.
,
Szedlacsek
,
P.
, and
Lucht
,
R.
,
2012
, “
Emission Measurements and OH-PLIF of Reacting Hydrogen Jets in Vitiated Crossflow for Stationary Gas Turbines
,”
ASME
Paper No. GT2012-68711
. 10.1115/GT2012-68711
9.
Sirignano
,
M.
,
Vedanth
,
N.
,
Emerson
,
B.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2018
, “
Nitrogen Oxide Emissions From Rich Premixed Reacting Jets in a Vitiated Crossflow
,”
Proceedings of the Combustion Institute
,
Dublin, Ireland
,
July 29–Aug. 3
, pp.
1
8
.10.1016/j.proci.2018.05.088
10.
Wagner
,
J. A.
,
Grib
,
S. W.
,
Renfro
,
M. W.
, and
Cetegen
,
B. M.
,
2015
, “
Flowfield Measurements and Flame Stabilization of a Premixed Reacting Jet in Vitiated Crossflow
,”
Combust. Flame
,
162
(
10
), pp.
3711
3727
.10.1016/j.combustflame.2015.07.010
11.
Wagner
,
J. A.
,
Grib
,
S. W.
,
Dayton
,
J. W.
, and
Renfro
,
M. W.
,
2016
, “
Flame Stabilization Analysis of a Premixed Reacting Jet in Vitiated Crossflow
,”
Proceedings of the Combustion Institute
,
Seoul, South Korea
,
July 31–Aug. 5
, pp.
3762
3771
.10.1016/j.proci.2016.07.020
12.
Gore
,
J. P.
, and
Zhan
,
N. J.
,
1996
, “
NOx Emission and Major Species Concentrations in Partially Premixed Laminar Methane/Air Co-Flow Jet Flame
,”
Combust. Flame
,
105
(
3
), pp.
414
427
.10.1016/0010-2180(95)00177-8
13.
Lyle
,
K. H.
,
Tseng
,
L. K.
,
Gore
,
J. P.
, and
Laurendeau
,
N. M.
,
1999
, “
A Study of Pollutant Emission Characteristics of Partially Premixed Turbulent Jet Flames
,”
Combust. Flame
,
116
(
4
), pp.
627
639
.10.1016/S0010-2180(98)00068-6
14.
Kim
,
T. K.
,
Alder
,
B. J.
,
Laurendeau
,
N. M.
, and
Gore
,
J. P.
,
1995
, “
Exhaust and ln-Situ Measurements of Nitric Oxide for Laminar Partially Premixed C2H6-Air Flames: Effect of Premixing Level at Constant Fuel Flowrate
,”
Combust. Sci. Technol.
,
110–111
(
1
), pp.
361
378
.10.1080/00102209508951931
15.
Driscoll
,
J. F.
,
Chen
,
R. H.
, and
Yoon
,
Y.
,
1992
, “
Nitric Oxide Levels of Turbulent Jet Diffusion Flames: Effects of Residence Time and Damkohler Number
,”
Combust. Flame
,
88
(
1
), pp.
37
49
.10.1016/0010-2180(92)90005-A
16.
Turns
,
S. R.
,
Myhr
,
F. H.
,
Bandaru
,
R. V.
, and
Maund
,
E. R.
,
1993
, “
Oxides of Nitrogen Emissions From Turbulent Jet Flames: Part II – Fuel Dilution and Partial Premixing Effects
,”
Combust. Flame
,
93
(
3
), pp.
255
260
.10.1016/0010-2180(93)90107-E
17.
Kolb
,
M.
,
Ahres
,
D.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2016
, “
A Model for Predicting the Lift-Off Height of Premixed Jets in Vitiated Cross Flow
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), p.
081901
.10.1115/1.4032421
18.
Sullivan
,
R.
,
Wilde
,
B.
,
Noble
,
D.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2014
, “
Time-Averaged Characteristics of a Reacting Fuel Jet in Vitiated Cross-Flow
,”
Combust. Flame
,
161
(
7
), pp.
1792
1803
.10.1016/j.combustflame.2013.12.022
19.
Ebi
,
D.
,
Doll
,
U.
,
Schulz
,
O.
,
Xiong
,
Y.
, and
Noiray
,
N.
,
2018
, “
Ignition of a Sequential Combustor: Evidence of Flame Propagation in the Autoignitable Mixture
,”
Proceedings of the Combustion Institute
,
Dublin, Ireland
,
July 29–Aug. 3
, pp.
1
8
.10.1016/j.proci.2018.06.068
20.
Markides
,
C. N.
, and
Mastorakos
,
E.
,
2011
, “
Experimental Investigation of the Effects of Turbulent Co-Flow of Heated Air
,”
Flow Turbul. Combust.
,
86
(
3–4
), pp.
585
608
.10.1007/s10494-010-9268-1
21.
Blouch
,
J.
, and
Law
,
C.
,
2003
, “
Effects of Turbulence on Nonpremixed Ignition of Hydrogen in Heated Crossflow
,”
Combust. Flame
,
132
(
3
), pp.
512
522
.10.1016/S0010-2180(02)00499-6
22.
Robinson
,
C.
, and
Smith
,
D. B.
,
1984
, “
The Auto-Ignition Temperature of Methane
,”
J. Hazard. Mater.
,
8
(
3
), pp.
199
203
.10.1016/0304-3894(84)85001-3
23.
Kerkemeier
,
S. G.
,
Frouzakis
,
C.
,
Boulouchos
,
K.
, and
Mastorakos
,
R.
,
2010
, “
Numerical Simulation of Autoignition of a Diluted Hydrogen Jet in Co-Flowing Turbulent Hot Air
,”
AIAA
Paper No. 2010-217
. 10.2514/6.2010-217
24.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion Alternative Fuels and Emissions
,
CRC Press Taylor & Francis Group
,
New York
.
You do not currently have access to this content.