Abstract

Recognizing the attention currently devoted to the environmental impact of aviation, this three-part publication series introduces two new aircraft propulsion concepts for the timeframe beyond 2030. This first part focuses on the steam injecting and recovering aero engine (SIRA) concept. Exhaust heat generated steam is injected into the combustion chamber. By use of a condenser, installed behind the steam generator, the water is recovered from the exhaust gas–steam mixture. Both lead to a noticeable increase in specific power compared to a conventional gas turbine and, foremost, to a significant increase in thermodynamic efficiency. The proposed concept is expected to reduce fuel burn and carbon dioxide (CO2) emissions by about 15% and nitrogen oxides (NOx) formation can be almost completely avoided compared to state-of-the-art engines of the same technology level. Moreover, the described concept has the potential to drastically reduce or even avoid the formation of condensation trails. Thus, the SIRA concept operated with sustainable aviation fuels offers the potential for climate-neutral aviation. Based on consistent thermodynamic descriptions, preliminary designs and initial performance studies, the potentials of the concepts are analyzed. Complementarily, a detailed discussion on concrete engineering solutions considers the implementation into aircraft. Finally, the impact on emissions is outlined.

References

1.
Advisory Council for Aviation Research and Innovation in Europe (ACARE)
,
2017
, “
Strategic Research and Innovation Agenda (SRIA) – Volume 1
,” ACARE, Derby, UK, accessed Nov. 7, 2020, https://www.acare4europe.org/sites/acare4europe.org/files/attachment/acare-strategic-research-innovation-volume-1-v2.7-interactive-fin_0.pdf
2.
Air Transport Action Group (ATAG),
2011
, “
The Right Flightpath to Reduce Aviation Emissions
,”
UNFCCC Climate Talks
, Durban, South Africa, Nov. 28–Dec. 11.https://seors.unfccc.int/applications/seors/attachments/get_attachment?code=AD75PKPBLWIRYBI18OTM7MF6SZ584E4E
3.
Bundesverband der Deutschen Luftverkehrswirtschaft e.V. (BDL)
,
2018
, “
Climate Protection Report 2018
,” BDL, Berlin, Germany, accessed Nov. 7, 2020, https://www.bdl.aero/wp-content/uploads/2019/07/Climate-protection-report-2018.pdf
4.
Lee
,
D. S.
,
Pitari
,
G.
,
Grewe
,
V.
,
Gierens
,
K.
,
Penner
,
J. E.
,
Petzold
,
A.
,
Prather
,
M. J.
,
Schumann
,
U.
,
Bais
,
A.
, and
Berntsen
,
T.
,
2010
, “
Transport Impacts on Atmosphere and Climate: Aviation
,”
Atmos. Environ.
,
44
(
37
), pp.
4678
4734
.10.1016/j.atmosenv.2009.06.005
5.
Grewe
,
V.
,
Dahlmann
,
K.
,
Flink
,
J.
,
Frömming
,
C.
,
Ghosh
,
R.
,
Gierens
,
K.
,
Heller
,
R.
,
Hendricks
,
J.
,
Jöckel
,
P.
,
Kaufmann
,
S.
,
Kölker
,
K.
,
Linke
,
F.
,
Luchkova
,
T.
,
Lührs
,
B.
,
Van Manen
,
J.
,
Matthes
,
S.
,
Minikin
,
A.
,
Niklaß
,
M.
,
Plohr
,
M.
,
Righi
,
M.
,
Rosanka
,
S.
,
Schmitt
,
A.
,
Schumann
,
U.
,
Terekhov
,
I.
,
Unterstrasser
,
S.
,
Vázquez-Navarro
,
M.
,
Voigt
,
C.
,
Wicke
,
K.
,
Yamashita
,
H.
,
Zahn
,
A.
, and
Ziereis
,
H.
,
2017
, “
Mitigating the Climate Impact From Aviation: Achievements and Results of the DLR WeCare Project
,”
Aerospace
,
4
(
3
), p.
34
.10.3390/aerospace4030034
6.
European Commission (EC),
2011
, “
Flightpath 2050, Europe's Vision for Aviation
,”
Report of the High Level Group on Aviation Research
.https://ec.europa.eu/transport/sites/transport/files/modes/air/doc/flightpath2050.pdf
7.
Kaiser
,
S.
,
Schmitz
,
O.
, and
Klingels
,
H.
,
2020
, “
Aero Engine Concepts Beyond 2030: Part 2—The Free-Piston Composite Cycle Engine
,”
ASME J. Eng. Gas Turbines Power
, ePub.10.1115/1.4048993
8.
Schmitz
,
O.
, Klingels, H., Kufner, P., Obermüller, M., Henke, M., Zanger, J., Grimm, F., Schuldt, S., Marcellan, A., Cirigliano, D., Kutne, P., Heron-Himmel, A., Schneider, S., Richter, J., Weigand, B., Göhler-Stroh, A., Seitz, A., and Hornung, M.,
2020
, “
Aero Engine Concepts Beyond 2030—Part 3: Experimental Demonstration of Technological Feasibility
,”
ASME J. Eng. Gas Turbines Power
, ePub.10.1115/1.4048994
9.
Cheng
,
D. Y.
,
1976
, “
Parallel-Compound Dual-Fluid Heat Engine
,” U.S. Patent No. 3,978,661.
10.
Cheng
,
D. Y.
,
1978
, “
Regenerative Parallel Compound Dual-Fluid Heat Engine
,” U.S. Patent No. 4,128,994.
11.
Cheng
,
D. Y.
, and
Nelson
,
A. L. C.
,
2002
, “
The Chronological Development of the Cheng Cycle Steam Injected Gas Turbine During the Past 25 Years
,”
ASME
Paper No. GT-2002-30119.10.1115/GT-2002-30119
12.
Tuzson
,
J.
,
1992
, “
Status of Steam-Injected Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
114
(
4
), pp.
682
686
.10.1115/1.2906642
13.
Jonsson
,
M.
, and
Yan
,
J.
,
2005
, “
Humidified Gas Turbines—A Review of Proposed and Implemented Cycles
,”
Energy
,
30
(
7
), pp.
1013
1078
.10.1016/j.energy.2004.08.005
14.
Kolp
,
D. A.
, and
Moeller
,
D. J.
,
1989
, “
World's First Full STIG™ LM5000 Installed at Simpson Paper Company
,”
ASME J. Eng. Gas Turbines Power
,
111
(
2
), pp.
200
210
.10.1115/1.3240237
15.
Klingels
,
H.
,
2018
, “
Reduction of Contrails During Operation of Aircraft
,” German Patent No. DE 10 2018 203 159 A1/International Patent No. WO 2019/166040 A1.
16.
Klingels
,
H.
, and
Schmitz
,
O.
,
2019
, “
Exhaust-Gas Treatment Device, Aircraft Propulsion System, and Method for Treating an Exhaust-Gas Stream
,” International Patent No. WO 2019/223823 A1.
17.
SAE International,
2013
, “
Aircraft Propulsion System Performance Station Designation and Nomenclature
,” Aerospace Recommended Practice, Warrendale, PA, Report No.
SAE ARP755C
. https://www.sae.org/standards/content/arp755c/
18.
Sanford
,
G.
, and
McBride
,
B. J.
,
1994
, “
Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications—I: Analysis
,” NASA/Lewis Research Center, Cleveland, OH, Report No.
NASA-RP-1311
.https://www.grc.nasa.gov/www/CEAWeb/RP-1311.htm
19.
Schmitz
,
O.
, and
Hornung
,
M.
,
2013
, “
Unified Applicable Propulsion System Performance Metrics
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
111201
.10.1115/1.4025066
20.
Antoshkiv
,
O.
,
Poojitganont
,
T.
,
Jehring
,
L.
, and
Berkholz
,
C.
,
2017
, “
Main Aspects of Kerosene and Gaseous Fuel Ignition in Aero-Engine
,”
Aeronaut. J.
,
121
(
1246
), pp.
1779
1794
.10.1017/aer.2017.113
21.
Sonntag
,
D.
,
1990
, “
Important New Values of the Physical Constants of 1986, Vapour Pressure Formulations Based on ITS-90, and Psychrometer Formulae
,”
Z. Meteorol.
,
40
(
5
), pp.
340
344
. https://scinapse.io/papers/2527349196
22.
Jensen
,
K. R.
,
Fojan
,
P.
,
Jensen
,
R. L.
, and
Gurevich
,
L.
,
2014
, “
Water Condensation: A Multiscale Phenomenon
,”
J. Nanosci. Nanotechnol.
,
14
(
2
), pp.
1859
1871
.10.1166/jnn.2014.9108
23.
Krueger
,
O.
,
Terhaar
,
S.
,
Paschereit
,
C.
, and
Duwig
,
C.
,
2013
, “
Large Eddy Simulations of Hydrogen Oxidation at Ultra-Wet Conditions in a Model Gas Turbine Combustor Applying Detailed Chemistry
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
021501
.10.1115/1.4007718
24.
Chen
,
A. G.
,
Maloney
,
D. J.
, and
Day
,
W. H.
,
2004
, “
Humid Air NOx Reduction Effect on Liquid Fuel Combustion
,”
ASME J. Eng. Gas Turbines Power
,
126
(
1
), pp.
69
74
.10.1115/1.1615255
25.
Göke, S
., and
Paschereit
,
C. O.
,
2012
, “Influence of Steam Dilution on NOx Formation in Premixed Natural Gas and Hydrogen Flames,”
AIAA
Paper No. 2012-1272.10.2514/6.2012-1272
26.
Klingels
,
H.
,
2019
, Luftfahrzeug, German Patent No. DE 10 2019 203 59.7.
27.
Ranganayakulu
,
C.
, and
Seetharamu
,
K. N.
,
2018
,
Compact Heat Exchangers
,
Wiley
, Hoboken, NJ, pp.
38
42
.10.1002/9781119424369
28.
Ho
,
J. Y.
,
Wang
,
X. W.
, and
Leong
,
K. C.
,
2018
, “
Filmwise Condensation of Steam on Vertical Plates With Novel Pin Fin Arrays Produced Cby Selective Laser Melting
,”
Int. J. Heat Mass Transfer
,
126
, pp.
652
666
.10.1016/j.ijheatmasstransfer.2018.05.063
29.
Rottonara
,
A.
,
1991
, “
Untersuchung der Abscheidung von Wasserdampf im Elektrischen Feld
,” Diploma thesis, Technische Universität Graz, Inst. f. Hochspannungstechnik, Graz, Austria.
You do not currently have access to this content.