Abstract

Hydrogen-fired gas turbines have the potential to play an important role in future CO2-neutral energy and industry sectors. A prerequisite for the operation of hydrogen-fired gas turbines is the availability of sufficient quantities of hydrogen. The combination of electrolysis and renewable power generation is currently considered the most relevant pathway for the large-scale production of CO2-neutral hydrogen. Regarding the fuel supply of hydrogen-fired gas turbines, this pathway is associated with various technical and economic challenges. This applies in particular to configurations in which electrolyzers and hydrogen storage capacities are installed directly at gas turbine sites to avoid hydrogen transport. Considering an exemplary system configuration, this study extends prior model-based investigations by focusing on the economic viability of the on-site fuel supply of hydrogen-fired gas turbines. The impact of various design parameters and operational strategies is analyzed using the levelized cost of hydrogen as the main economic indicator. The study reveals that the investigated on-site hydrogen production is not economically viable within the current (2019) framework of the German energy sector. Assuming the extensive availability of renewable power generation in the long-term, additional investigations indicate that on-site hydrogen production and storage systems for gas turbines could potentially become economically viable if various advantageous conditions are met. These conditions include a sufficient availability of inexpensive renewable power for the operation of electrolyzers as well as a sufficient utilization of on-site hydrogen storage capacities to justify corresponding capital expenditures.

References

1.
Schellnhuber
,
H. J.
,
Rahmstorf
,
S.
, and
Winkelmann
,
R.
,
2016
, “
Why the Right Climate Target Was Agreed in Paris
,”
Nat. Clim. Change
,
6
(
7
), pp.
649
653
.10.1038/nclimate3013
2.
International Energy Agency,
2020
, “
Data and Statistics
,” International Energy Agency, Paris, France, accessed Oct. 12, 2020, https://www.iea.org/data-and-statistics
3.
Robinius
,
M.
,
Otto
,
A.
,
Heuser
,
P.
,
Welder
,
L.
,
Syranidis
,
K.
,
Ryberg
,
D. S.
,
Grube
,
T.
,
Markewitz
,
P.
,
Peters
,
R.
, and
Stolten
,
D.
,
2017
, “
Linking the Power and Transport Sectors—Part 1: The Principle of Sector Coupling
,”
Energies
,
10
(
7
), p.
956
.10.3390/en10070956
4.
International Energy Agency,
2019
, “
World Energy Outlook 2019
,”
International Energy Agency
,
Paris, France
, Technical Report.
5.
Holttinen
,
H.
,
2005
, “
Impact of Hourly Wind Power Variations on the System Operation in the Nordic Countries
,”
Wind Energy
,
8
(
2
), pp.
197
218
.10.1002/we.143
6.
Lechner
,
C.
, and
Seume
,
J.
,
2010
,
Stationäre Gasturbinen
, Vol.
2
,
Springer-Verlag
,
Berlin, Heidelberg, Germany
.
7.
acatech/Lepoldina/Akademienunion,
eds.,
2016
, “
Flexibility Concepts for the German Power Supply 2050. Ensuring Stability in the Age of Renewable Energies (Series on Science-Based Policy Advice)
,” Leopoldina, acatech, Akademienunion, Munich, Germany, Technical Report.
8.
Valera-Medina
,
A.
,
Morris
,
S.
,
Runyon
,
J.
,
Pugh
,
D. G.
,
Marsh
,
R.
,
Beasley
,
P.
, and
Hughes
,
T.
,
2015
, “
Ammonia, Methane and Hydrogen for Gas Turbines
,”
Energy Procedia
,
75
, pp.
118
123
.10.1016/j.egypro.2015.07.205
9.
Stolten
,
D.
, and
Emonts
,
B.
, eds.,
2016
,
Hydrogen Science and Engineering
, Vol.
1
,
Wiley-VCH Verlag
,
Weinheim, Germany
.
10.
Geißler
,
T.
,
Abánades
,
A.
,
Heinzel
,
A.
,
Mehravaran
,
K.
,
Müller
,
G.
,
Rathnam
,
R. K.
,
Rubbia
,
C.
,
Salmieri
,
D.
,
Stoppel
,
L.
,
Stückrad
,
S.
,
Weisenburger
,
A.
,
Wenninger
,
H.
, and
Wetzel
,
T.
,
2016
, “
Hydrogen Production Via Methane Pyrolysis in a Liquid Metal Bubble Column Reactor With a Packed Bed
,”
Chem. Eng. J.
,
299
, pp.
192
200
.10.1016/j.cej.2016.04.066
11.
Riis
,
F.
,
2018
, “
Norway CCS Demonstration Project: Evaluation of Jurassic Reservoirs for Safe CO2 Injection and Storage
,”
Proceedings of Fifth CO2 Geological Storage Workshop
, Utrecht, The Netherlands, Nov. 21–23, EAGE Publications BV, pp. 1–5.10.3997/2214-4609.201802954
12.
Federal Ministry for Economic Affairs and Energy, Public Relations Division
,
2020
, “
The National Hydrogen Strategy
,”
Federal Ministry for Economic Affairs and Energy
,
Berlin, Germany
, Technical Report.
13.
ETN Global
,
2020
, “
Hydrogen Gas Turbines
,” ETN Global, Brussels, Belgium, Technical Report.
14.
Preuster
,
P.
,
Alekseev
,
A.
, and
Wasserscheid
,
P.
,
2017
, “
Hydrogen Storage Technologies for Future Energy Systems
,”
Annu. Rev. Chem. Biomol. Eng.
,
8
(
1
), pp.
445
471
.10.1146/annurev-chembioeng-060816-101334
15.
Sibai
,
A. E.
,
Rihko-Struckmann
,
L.
, and
Sundmacher
,
K.
,
2015
, “
Synthetic Methane From CO2: Dynamic Optimization of the Sabatier Process for Power-to-Gas Applications
,”
Comput. Aided Chem. Eng.
,
37
, pp.
1157
1162
.10.1016/B978-0-444-63577-8.50038-3
16.
Fasihi
,
M.
,
Efimova
,
O.
, and
Breyer
,
C.
,
2019
, “
Techno-Economic Assessment of CO2 Direct Air Capture Plants
,”
J. Cleaner Prod.
,
224
, pp.
957
980
.10.1016/j.jclepro.2019.03.086
17.
Nayak-Luke
,
R.
,
Bañares-Alcántara
,
R.
, and
Wilkinson
,
I.
,
2018
, “
Green Ammonia: Impact of Renewable Energy Intermittency on Plant Sizing and Levelized Cost of Ammonia
,”
Ind. Eng. Chem. Res.
,
57
(
43
), pp.
14607
14616
.10.1021/acs.iecr.8b02447
18.
Kobayashi
,
H.
,
Hayakawa
,
A.
,
Somarathne
,
K. D. K. A.
, and
Okafor
,
E. C.
,
2019
, “
Science and Technology of Ammonia Combustion
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
109
133
.10.1016/j.proci.2018.09.029
19.
Hydrogen Europe Intelligence Department
,
2020
, “
Clean Hydrogen Monitor 2020
,” Hydrogen Europe, Brussels, Belgium, Technical Report.
20.
Reuß
,
M.
,
Grube
,
T.
,
Robinius
,
M.
,
Preuster
,
P.
,
Wasserscheid
,
P.
, and
Stolten
,
D.
,
2017
, “
Seasonal Storage and Alternative Carriers: A Flexible Hydrogen Supply Chain Model
,”
Appl. Energy
,
200
, pp.
290
302
.10.1016/j.apenergy.2017.05.050
21.
Wang
,
A.
,
van der Leun
,
K.
,
Peters
,
D.
, and
Buseman
,
M.
,
2020
, “
European Hydrogen Backbone
,” Guidehouse, Utrecht, The Netherlands, Technical Report.
22.
European Commission
,
2021
, “
Hydrogen as a Flexible Energy Storage for a Fully Renewable European Power System
,” European Commission, Brussels, Belgium, accessed June 22, 2021, https://cordis.europa.eu/project/id/884229
23.
Chiesa
,
P.
,
Lozza
,
G.
, and
Mazzocchi
,
L.
,
2005
, “
Using Hydrogen as Gas Turbine Fuel
,”
ASME J. Eng. Gas Turbine Power
,
127
(
1
), pp.
73
80
.10.1115/1.1787513
24.
Seydel
,
C. G.
,
2015
, “
Performance Influences of Hydrogen Enriched Fuel on Heavy-Duty Gas Turbines in Combined Cycle Power Plants
,”
ASME
Paper No. GT2015-42018.10.1115/GT2015-42018
25.
Glenk
,
G.
, and
Reichelstein
,
S.
,
2019
, “
Economics of Converting Renewable Power to Hydrogen
,”
Nat. Energy
,
4
(
3
), pp.
216
222
.10.1038/s41560-019-0326-1
26.
Kopp
,
M.
,
Coleman
,
D.
,
Stiller
,
C.
,
Scheffer
,
K.
,
Aichinger
,
J.
, and
Scheppat
,
B.
,
2017
, “
Energiepark Mainz: Technical and Economic Analysis of the Worldwide Largest Power-to-Gas Plant With PEM Electrolysis
,”
Int. J. Hydrogen Energy
,
42
(
19
), pp.
13311
13320
.10.1016/j.ijhydene.2016.12.145
27.
Ebaid
,
M. S. Y.
,
Hammad
,
M.
, and
Alghamdi
,
T.
,
2015
, “
Thermo Economic Analysis of PV and Hydrogen Gas Turbine Hybrid Power Plant of 100 MW Power Output
,”
Int. J. Hydrogen Energy
,
40
(
36
), pp.
12120
12143
.10.1016/j.ijhydene.2015.07.077
28.
Colbertaldo
,
P.
,
Guandalini
,
G.
,
Crespi
,
E.
, and
Campanari
,
S.
,
2020
, “
Balancing a High-Renewables Electric Grid With Hydrogen-Fuelled Combined Cycles: A Country Scale Analysis
,”
ASME
Paper No. GT2020-15570.10.1115/GT2020-15570
29.
Bexten
,
T.
,
Wirsum
,
M.
,
Roscher
,
B.
,
Schelenz
,
R.
, and
Jacobs
,
G.
,
2021
, “
Model-Based Analysis of a Combined Heat and Power System Featuring a Hydrogen-Fired Gas Turbine With On-Site Hydrogen Production and Storage
,”
ASME J. Eng. Gas Turbines Power
,
143
(
8
), p.
081018
.10.1115/1.4049766
30.
Saidi
,
K.
,
Orth
,
U.
,
Boje
,
S.
, and
Ferekers
,
C.
,
2014
, “
A Comparative Study of Combined Heat and Power Systems for a Typical Food Industry Application
,”
ASME
Paper No. GT2014-26234.10.1115/GT2014-26234
31.
Madeddu
,
S.
,
Ueckerdt
,
F.
,
Pehl
,
M.
,
Peterseim
,
J.
,
Lord
,
M.
,
Kumar
,
K. A.
,
Krüger
,
C.
, and
Luderer
,
G.
,
2020
, “
The CO2 Reduction Potential for the European Industry Via Direct Electrification of Heat Supply (Power-to-Heat)
,”
Environ. Res. Lett.
,
15
(
12
), p.
124004
.10.1088/1748-9326/abbd02
32.
Gerhardt
,
N.
,
Bard
,
J.
,
Schmitz
,
R.
,
Beil
,
M.
,
Pfennig
,
M.
, and
Kneiske
,
T.
,
2020
, “
Hydrogen in the Energy System of the Future: Focus on Heat in Buildings
,”
Fraunhofer Institute for Energy Economics and Energy System Technology (IEE)
,
Hannover, Germany
, Technical Report.
33.
SIEMENS AG
,
2015
, “
SGT-300 Industrial Gas Turbine
,”
SIEMENS AG
,
Munich, Germany
, Technical Report.
34.
Noble
,
D.
,
Wu
,
D.
,
Emerson
,
B.
,
Sheppard
,
S.
,
Lieuwen
,
T.
, and
Angello
,
L.
,
2021
, “
Assessment of Current Capabilities and Near-Term Availability of Hydrogen-Fired Gas Turbines Considering a Low-Carbon Future
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041002
.10.1115/1.4049346
35.
Bothien
,
M. R.
,
Ciani
,
A.
,
Wood
,
J. P.
, and
Fruechtel
,
G.
,
2019
, “
Sequential Combustion in Gas Turbines: The Key Technology for Burning High Hydrogen Contents With Low Emissions
,”
ASME
Paper No. GT2019-90798.10.1115/GT2019-90798
36.
Tekin
,
N.
,
Ashikaga
,
M.
,
Horikawa
,
A.
, and
Harald
,
F.
,
2018
, “
Enhancement of Fuel Flexibility of Industrial Gas Turbines by Development of Innovative Hydrogen Combustion Systems
,”
Gas Energy
,
2
, pp.
1
6
.https://www.kawasakigasturbine.de/files/Hydrogen_as_fuel_for_GT.pdf
37.
Bexten
,
T.
,
Jörg
,
S.
,
Petersen
,
N.
,
Wirsum
,
M.
,
Liu
,
P.
, and
Li
,
Z.
,
2021
, “
Model-Based Thermodynamic Analysis of a Hydrogen-Fired Gas Turbine With External Exhaust Gas Recirculation
,”
ASME J. Eng. Gas Turbines Power
,
143
(
8
), p.
081016
.10.1115/1.4049699
38.
Vetter
,
G.
,
1998
,
Leckfreie Pumpen, Verdichter Und Vakuumpumpen
,
Vulkan-Verlag
,
Essen, Germany
.
39.
Deutscher Wetterdienst,
2020
, “
CDC-Climate Data Center
,” Deutscher Wetterdienst, Offenbach, Germany, accessed Oct. 12, 2020, https://cdc.dwd.de
40.
Bexten
,
T.
,
Wirsum
,
M.
,
Roscher
,
B.
,
Schelenz
,
R.
,
Jacobs
,
G.
,
Weintraub
,
D.
, and
Jeschke
,
P.
,
2017
, “
Techno-Economic Study of Wind Farm Forecast Error Compensation by Flexible Heat-Driven CHP Units
,”
ASME
Paper No. GT2017-63557.10.1115/GT2017-63557
41.
ENERCON GmbH
,
2016
, “
ENERCON Produktübersicht
,”
ENERCON GmbH
,
Aurich, Germany
, Technical Report.
42.
Kost
,
C.
,
Shmmugam
,
S.
,
Jülch
,
V.
,
Nguyen
,
H.-T.
, and
Schlegl
,
T.
,
2018
, “
Levelized Cost of Electricity Renewable Energy Technologies
,”
Fraunhofer Institute for Solar Energy Systems (ISE)
,
Freiburg, Germany
, Technical Report.https://www.ise.fraunhofer.de/content/dam/ise/en/documents/publications/studies/EN2018_Fraunhofer-ISE_LCOE_Renewable_Energy_Technologies.pdf
43.
IRENA
,
2018
, “
Hydrogen From Renewable Power: Technology Outlook for the Energy Transition
,”
International Renewable Energy Agency
,
Abu Dhabi, United Arab Emirates
, Technical Report.
44.
BDEW
,
2020
, “
BDEW-Strompreisanalyse Januar 2020
,”
BDEW
,
Berlin, Germany
, Technical Report.
45.
ENTSO-E
,
2020
, “
Transparency Platform
,” ENTSO-E, Brussels, Belgium, 2020, accessed Oct. 12, https://transparency.entsoe.eu
46.
Icha
,
P.
, and
Kuhs
,
G.
,
2020
, “
Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990-2019
,”
Umweltbundesamt
,
Dessau-Roßlau, Germany
, Technical Report.
47.
Bundesnetzagentur für Elektrizität, Gas Telekommunikation, Post und Eisenbahnen
,
2020
, “
Monitoringbericht 2019
,”
Bundesnetzagentur für Elektrizität, Gas Telekommunikation, Post und Eisenbahnen
,
Bonn, Germany
, Technical Report.
48.
Matthey
,
A.
, and
Bünger
,
B.
,
2020
, “
Methodenkonvention 3.1 zur Ermittlung von Umweltkosten
,”
Umweltbundesamt, Dessau-Roßlau
,
Germany
, Technical Report.
You do not currently have access to this content.