Abstract

The dynamic behavior of spiral-grooved gas bearing supported four degrees-of-freedom (DOF) rotors is investigated by means of linearized bearing force coefficients and full time-integrated transient analysis. The transient method consists of a state-space representation, which couples the equations of motion with the compressible thin-film fluid equation. The linearized method is based on the perturbation analysis around a given eccentric shaft position ε, allowing to compute the static and linear dynamic bearing force coefficients at different excitation frequencies. The two methods are compared for a variation of test rotors and bearing geometries in a given compressibility number interval of Λ=[0,40]. The limitations and weaknesses of the linearized model are presented. It is shown that shafts with two symmetric herringbone-grooved journal bearings (HGJBs) have their maximum stability and load capacity if the center of gravity lays in the middle of the two bearings. For symmetric rotors (la/lb=1), the two rigid modes, cylindrical and conical, are present and are influenced by the mass and transverse moment of inertia independently. For asymmetric rotors (la/lb<1), the stability region decreases, and the modes have a mixed shape. It is no longer possible to clearly distinguish between pure cylindrical and pure conical mode shapes. The two methods predict the critical mass and critical transverse moment of inertias within a difference of <7%. A quasi-linear unbalance module for rigid gas bearing supported rotors is presented, which considers eccentricity-dependent bearing force coefficients, allowing to speed up the unbalance response analysis by 4 orders of magnitude. The unbalance module is compared with the full transient orbital analysis, suggesting that the quasi-linear module predicts the nonlinear unbalance response with <6% deviation for amplitudes up to ε<0.5 within the complete compressibility number range.

References

1.
Cunningham
,
R. E.
,
Fleming
,
D. P.
, and
Anderson
,
W. J.
,
1969
, “
Experimental Stability Studies of the Herringbone-Grooved Gas-Lubricated Journal Bearing
,”
ASME J. Lubr. Technol.
,
91
(
1
), pp.
52
57
.10.1115/1.3554896
2.
Sternlicht
,
B.
,
1968
, “
Gas-Bearing Turbomachinery
,”
ASME J. Tribol.
,
90
(
4
), pp.
665
678
.10.1115/1.3601696
3.
Schiffmann
,
J.
, and
Favrat
,
D.
,
2009
, “
Experimental Investigation of a Direct Driven Radial Compressor for Domestic Heat Pumps
,”
Int. J. Refrig.
,
32
(
8
), pp.
1918
1928
.10.1016/j.ijrefrig.2009.07.006
4.
Rosset
,
K.
,
Mounier
,
V.
,
Guenat
,
E.
, and
Schiffmann
,
J.
,
2018
, “
Multi-Objective Optimization of Turbo-ORC Systems for Waste Heat Recovery on Passenger Car Engines
,”
Energy
,
159
, pp.
751
765
.10.1016/j.energy.2018.06.193
5.
Zhao
,
D.
,
Blunier
,
B.
,
Gao
,
F.
,
Dou
,
M.
, and
Miraoui
,
A.
,
2014
, “
Control of an Ultrahigh-Speed Centrifugal Compressor for the Air Management of Fuel Cell Systems
,”
IEEE Trans. Ind. Appl.
,
50
(
3
), pp.
2225
2234
.10.1109/TIA.2013.2282838
6.
Wagner
,
P. H.
,
Wuillemin
,
Z.
,
Constantin
,
D.
,
Diethelm
,
S.
,
Van Herle
,
J.
, and
Schiffmann
,
J.
,
2020
, “
Experimental Characterization of a Solid Oxide Fuel Cell Coupled to a Steam-Driven Micro Anode Off-Gas Recirculation Fan
,”
Appl. Energy
,
262
, p.
114219
.10.1016/j.apenergy.2019.114219
7.
Lee
,
Y. B.
,
Kwon
,
S. B.
,
Kim
,
T. H.
, and
Sim
,
K.
,
2013
, “
Feasibility Study of an Oil-Free Turbocharger Supported on Gas Foil Bearings Via On-Road Tests of a Two-Liter Class Diesel Vehicle
,”
ASME J. Eng. Gas Turbines Power
,
135
(
5
), p.
052701
.10.1115/1.4007883
8.
Whipple
,
R.
,
1951
, “
Theory of the Spiral Grooved Thrust Bearing With Liquid or Gas Lubricant
,” Great Britain Atomic Energy Research Establishment, Harwell, Berks, UK, Technical Report No. AERE-T/R-622.
9.
Vohr
,
J.
, and
Pan
,
C.
,
1964
, “
On the Spiral Grooved, Self-Acting, Gas Bearing
,” Mechanical Technology, Latham, NY, Report No. 63TR52.
10.
Vohr
,
J. H.
, and
Chow
,
C. Y.
,
1965
, “
Characteristics of Herringbone-Grooved, Gas-Lubricated Journal Bearings
,”
ASME J. Basic Eng.
,
87
(
3
), pp.
568
576
.10.1115/1.3650607
11.
Hirs
,
G. G.
,
1965
, “
The Load Capacity and Stability Characteristics of Hydrodynamic Grooved Journal Bearings
,”
ASLE Trans.
,
8
(
3
), pp.
296
305
.10.1080/05698196508972102
12.
Malanoski
,
S. B.
,
1965
, “
Experiments on an Ultra-Stable Gas Journal Bearing
,”
Tribology
,
89
(
4
), p.
62
.
13.
Pan
,
C. H. T.
,
1964
, “
Spectral Analysis of Gas Bearing Systems for Stability Studies
,” Mechanical Technology, Latham, NY, Technical Report No. AD0610872.
14.
Fleming
,
D. P.
, and
Hamrock
,
B. J.
,
1974
, “
Optimization of Self-Acting Herringbone Journal Bearing for Maximum Stability
,” NASA, Cleveland, OH, NASA Technical Memorandum, Report No.
NASA TM X- 7147
.
15.
Castelli
,
V.
, and
Elrod
,
H. G.
,
1965
, “
Solution of the Stability Problem for 360 Deg Self-Acting, Gas-Lubricated Bearings
,”
ASME J. Basic Eng.
,
87
(
1
), pp.
199
210
.10.1115/1.3650508
16.
Bonneau
,
D.
, and
Absi
,
J.
,
1994
, “
Analysis of Aerodynamic Journal Bearings With Small Number of Herringbone Grooves by Finite Element Method
,”
ASME J. Tribol.
,
116
(
4
), pp.
698
704
.10.1115/1.2927320
17.
Wang
,
J. K.
, and
Khonsari
,
M. M.
,
2006
, “
Bifurcation Analysis of a Flexible Rotor Supported by Two Fluid-Film Journal Bearings
,”
ASME J. Tribol.
,
128
(
3
), pp.
594
603
.10.1115/1.2197842
18.
Wang
,
C. C.
,
2008
, “
Theoretical and Nonlinear Behavior Analysis of a Flexible Rotor Supported by a Relative Short Herringbone-Grooved Gas Journal-Bearing System
,”
Phys. D: Nonlinear Phenom.
,
237
(
18
), pp.
2282
2295
.10.1016/j.physd.2008.02.004
19.
Hassini
,
M. A.
, and
Arghir
,
M.
,
2015
, “
A Simplified and Consistent Nonlinear Transient Analysis Method for Gas Bearing: Extension to Flexible Rotors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), p.
092502
.10.1115/1.4029709
20.
Miyanaga
,
N.
, and
Tomioka
,
J.
,
2006
, “
Stability Threshold of Herringbone-Grooved Aerodynamic Journal Bearings With Considering Frequency Dependence of External Stiffness and Damping Elements
,”
Jpn. Soc. Des. Eng.
,
46
, pp.
231
238
.
21.
Miyanaga
,
N.
, and
Tomioka
,
J.
,
2015
, “
Stability Analysis of Herringbone-Grooved Aerodynamic Journal Bearings for Ultra High-Speed Rotations
,”
Int. J. Mater., Mech. Manuf.
,
4
(
3
), pp.
156
161
.
22.
Miyanaga
,
N.
, and
Tomioka
,
J.
,
2016
, “
Effect of Support Stiffness and Damping on Stability Characteristics of Herringbone-Grooved Aerodynamic Journal Bearings Mounted on Viscoelastic Supports
,”
Tribol. Int.
,
100
, pp.
195
203
.10.1016/j.triboint.2016.01.019
23.
Pham
,
H.
, and
Bonello
,
P.
,
2013
, “
Efficient Techniques for the Computation of the Nonlinear Dynamics of a Foil-Air Bearing Rotor System
,”
ASME
Paper No. GT2013-94389.10.1115/GT2013-94389
24.
Bonello
,
P.
, and
Pham
,
H. M.
,
2014
, “
The Efficient Computation of the Nonlinear Dynamic Response of a Foil-Air Bearing Rotor System
,”
J. Sound Vib.
,
333
(
15
), pp.
3459
3478
.10.1016/j.jsv.2014.03.001
25.
Bonello
,
P.
, and
Pham
,
H. M.
,
2014
, “
Nonlinear Dynamic Analysis of High Speed Oil-Free Turbomachinery With Focus on Stability and Self-Excited Vibration
,”
ASME J. Tribol.
,
136
(
4
), p.
041705
.10.1115/1.4027859
26.
Larsen
,
J. S.
, and
Santos
,
I. F.
,
2015
, “
On the Nonlinear Steady-State Response of Rigid Rotors Supported by Air Foil Bearings—Theory and Experiments
,”
J. Sound Vib.
,
346
, pp.
284
297
.10.1016/j.jsv.2015.02.017
27.
Larsen
,
J. S.
,
Santos
,
I. F.
, and
von Osmanski
,
S.
,
2016
, “
Stability of Rigid Rotors Supported by Air Foil Bearings: Comparison of Two Fundamental Approaches
,”
J. Sound Vib.
,
381
, pp.
179
191
.10.1016/j.jsv.2016.06.022
28.
Lund
,
J. W.
,
1968
, “
Calculation of Stiffness and Damping Properties of Gas Bearings
,”
ASME J. Lubr. Technol.
,
90
(
4
), pp.
793
803
.10.1115/1.3601723
29.
Liu
,
W.
,
Bättig
,
P.
,
Wagner
,
P. H.
, and
Schiffmann
,
J.
,
2021
, “
Nonlinear Study on a Rigid Rotor Supported by Herringbone Grooved Gas Bearings: Theory and Validation
,”
Mech. Syst. Signal Process.
,
146
, p.
106983
.10.1016/j.ymssp.2020.106983
30.
Schiffmann
,
J.
, and
Favrat
,
D.
,
2010
, “
Integrated Design and Optimization of Gas Bearing Supported Rotors
,”
ASME J. Mech. Des.
,
132
(
5
), p.
051007
.10.1115/1.4001381
31.
Schiffmann
,
J.
, and
Spakovszky
,
Z. S.
,
2013
, “
Foil Bearing Design Guidelines for Improved Stability
,”
ASME J. Tribol.
,
135
(
1
), p.
011103
.10.1115/1.4007759
32.
Schiffmann
,
J.
, and
Favrat
,
D.
,
2006
, “
Multi-Objective Optimisation of Herringbone Grooved Gas Bearings Supporting a High Speed Rotor, Taking Into Account Rarefied Gas and Real Gas Effects
,”
ASME
Paper No. ESDA2006-95085.10.1115/ESDA2006-95085
33.
Iseli
,
E.
,
Guenat
,
E.
,
Tresch
,
R.
, and
Schiffmann
,
J.
,
2020
, “
Analysis of Spiral-Grooved Gas Journal Bearings by the Narrow-Groove Theory and the Finite Element Method at Large Eccentricities
,”
ASME J. Tribol.
,
142
(
4
), p.
041802
.10.1115/1.4045636
34.
Schiffmann
,
J.
,
2008
, “
Integrated Design, Optimization and Experimental Investigation of a Direct Driven Turbocompressor for Domestic Heat Pumps
,”
Ph.D. thesis
, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
.10.5075/epfl-thesis-4126
35.
Hassini
,
M. A.
, and
Arghir
,
M.
,
2014
, “
A New Approach for the Stability Analysis of Rotors Supported by Gas Bearings
,”
ASME J. Eng. Gas Turbines Power
,
136
(
2
), p.
022504
.10.1115/1.4025483
36.
Iseli
,
E.
, and
Schiffmann
,
J.
,
2021
, “
Prediction of the Reaction Forces of Spiral-Groove Gas Journal Bearings by Artificial Neural Network Regression Models
,”
J. Comput. Sci.
,
48
, p.
101256
.10.1016/j.jocs.2020.101256
37.
Giancarlo
,
G.
,
2007
,
Dynamics of Rotating Systems
,
Springer Science & Business Media
, New York.
You do not currently have access to this content.