Abstract

Lubricant ignition is a highly undesirable event in any mechanical system, and surprisingly minimal work has been conducted to investigate the auto-ignition properties of gas turbine lubricants. To this end, using a recently established spray injection scheme in a shock tube, two gas turbine lubricants (Mobil DTE 732 and Lubricant A from Cooper et al. 2021, “Auto-Ignition of Gas Turbine Lubricating Oils in a Shock Tube Using Spray Injection,” ASME J. Eng. Gas Turbines Power, 143(5), p. 051008) were subjected to high-temperature, post-reflected-shock conditions, and OH* chemiluminescence was monitored at the sidewall location of the shock tube to measure ignition delay time (τign). A combination of an extended shock-tube driver and driver-gas tailoring were utilized to observe ignition between 1183 K and 1385 K at near-atmospheric pressures. A clear, two-stage-ignition process was observed for all tests with Mobil DTE 732, and both first and second stage τign are compared. Second stage ignition was found to be more indicative of lubricant ignition and was used to compare τign values with lubricant A. Both lubricants exhibit three ignition regimes: a high-temperature, Arrhenius-like regime (>1275 K); an intermediate, negative-temperature-coefficient-like regime (1230 –1275 K); and a low-temperature ignition regime (<1230 K). Similar τign behavior in the high-temperature regime was seen for both lubricants, and a regression analysis using τign data from both lubricants in this region produced the Arrhenius expression τign(μs) = 4.4 × 10−14 exp(96.7(kcal/mol)/RT). While lubricant A was found to be less reactive in the intermediate-temperature regime, Mobil DTE 732 was less reactive in the low-temperature regime. As the low-temperature regime is more relevant to gas turbine conditions, Mobil DTE 732 is considered more desirable for system implementation. Chemical kinetic modeling was also performed using n-hexadecane models (a lubricant surrogate suggested in the literature). The current models are unable to reproduce the three regimes observed and predict activation energies much lower than those observed in the high-temperature regime, suggesting n-hexadecane is a poor surrogate for lubricant ignition. Additionally, experiments were conducted with Jet-A for temperatures between 1145 and 1419 K around 1 atm. Good agreement is seen with both literature data and model predictions, anchoring the experiment with previously established τign measurement methods and calculations. A linear regression analysis of the Jet-A data produced the Arrhenius expression: τign(μs) = 6.39 × 10−5exp(41.4(kcal/mol)/RT).

References

1.
Loomis
,
W. R.
,
1976
, “
Aircraft Engine Sump-Fire Studies
,” NASA Aircraft Safety and Operating Problems Conference, Langley Research Center, Hampton, VA, Oct. 18–20, Paper No.
NASA SP-416
, pp.
443
456
.https://core.ac.uk/display/10327040
2.
Kuchta
,
J.
, and
Cato
,
R.
,
1968
, “
Ignition and Flammability Properties of Lubricants
,” Bureau of Mines,
SAE Transactions
, 77(2), pp.
1008
1020
.https://www.jstor.org/stable/44565194
3.
Zabetakis
,
M. G.
,
Scott
,
G. S.
, and
Kennedy
,
R. E.
,
1962
, “
Autoignition of Lubricants at Elevated Pressures
,”
United States Department of the Interior
,
Bureau of Mines
, Pittsburgh, PA.
4.
Levy
,
Y.
,
Sherbaum
,
V.
, and
Arfi
,
P.
,
2004
, “
Basic Thermodynamics of FLOXCOM, the Low-NOx Gas Turbines Adiabatic Combustor
,”
Appl. Therm. Eng.
,
24
(
11–12
), pp.
1593
1605
.10.1016/j.applthermaleng.2003.11.022
5.
Kim
,
C. J.
,
Choi
,
H. H.
, and
Sohn
,
C. H.
,
2011
, “
Auto-ignition of Lubricating Oil Working at High Pressures in a Compressor for an Air Conditioner
,”
J. Hazard. Mater.
,
185
(
1
), pp.
416
422
.10.1016/j.jhazmat.2010.09.049
6.
Sun
,
W.
,
Lin
,
W.-C.
,
You
,
F.
,
Shu
,
C.-M.
, and
Qin
,
S.-H.
,
2019
, “
Prevention of Green Energy Loss: Estimation of Fire Hazard Potential in Wind Turbines
,”
Renewable Energy
,
140
, pp.
62
69
.10.1016/j.renene.2019.03.045
7.
Williams
,
R.
, and
Landis
,
J.
,
1954
, “
Some Effects of Fuels and Lubricants on Autoignition in Cars on the Road
,”
SAE Trans.
,
62
, pp.
57
71
.https://www.jstor.org/stable/44547305
8.
Wang
,
Z.
,
Liu
,
H.
, and
Reitz
,
R. D.
,
2017
, “
Knocking Combustion in Spark-Ignition Engines
,”
Prog. Energy Combust. Sci.
,
61
, pp.
78
112
.10.1016/j.pecs.2017.03.004
9.
Cardew
,
G.
, and
Cardew
,
G.
,
1995
,
The Airgun From Trigger to Target
,
GV & GM Cardew
, Stafford, UK.
10.
Teitge
,
D.
,
Thomas
,
J. C.
, and
Petersen
,
E. L.
, “
High-Speed Video Analysis of Lubricating Oils Undergoing Hot-Surface Ignition
,”
AIAA
Paper No. 2020-3887. 10.2514/6.2020-3887
11.
Jackson
,
J. L.
,
1951
, “
Spontaneous Ignition Temperatures
,”
Ind. Eng. Chem.
,
43
(
12
), pp.
2869
2870
.10.1021/ie50504a058
12.
Cooper
,
S. P.
,
Browne
,
Z. K.
,
Alturaifi
,
S. A.
,
Mathieu
,
O.
, and
Petersen
,
E. L.
,
2021
, “
Auto-Ignition of Gas Turbine Lubricating Oils in a Shock Tube Using Spray Injection
,”
ASME J. Eng. Gas Turbines Power
,
143
(
5
), p. 051008. 10.1115/1.4049484
13.
Hargis
,
J. W.
, and
Petersen
,
E. L.
,
2015
, “
Methane Ignition in a Shock Tube With High Levels of CO2 Dilution: Consideration of the Reflected-Shock Bifurcation
,”
Energy Fuels
,
29
(
11
), pp.
7712
7726
.10.1021/acs.energyfuels.5b01760
14.
Pryor
,
O.
,
Barak
,
S.
,
Lopez
,
J.
,
Ninnemann
,
E.
,
Koroglu
,
B.
,
Nash
,
L.
, and
Vasu
,
S.
,
2017
, “
High Pressure Shock Tube Ignition Delay Time Measurements During Oxy-Methane Combustion With High Levels of CO2 Dilution
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042208
.10.1115/1.4036254
15.
Cooper
,
S. P.
,
Mulvihill
,
C. R.
,
Mathieu
,
O.
,
Petersen
,
E. L.
,
Crofton
,
M. W.
, and
Lam
,
K. Y.
,
2020
, “
CH Kinetics Measurements and Their Importance for Modeling Prompt NOx Formation in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
142
(
4
), p.
041007
.10.1115/1.4044468
16.
Mulvihill
,
C. R.
,
2019
, “
H2O Laser Absorption and OH* Chemiluminescence Measurements of H2-NO2 Oxidation in a Shock Tube
,”
Ph.D. dissertation
,
Texas A&M University
, College Station, TX.https://hdl.handle.net/1969.1/186939
17.
Alturaifi
,
S. A.
,
Rebagay
,
R. L.
,
Mathieu
,
O.
,
Guo
,
B.
, and
Petersen
,
E. L.
,
2019
, “
A Shock-Tube Autoignition Study of Jet, Rocket, and Diesel Fuels
,”
Energy Fuels
,
33
(
3
), pp.
2516
2525
.10.1021/acs.energyfuels.8b04290
18.
Malewicki
,
T.
,
Gudiyella
,
S.
, and
Brezinsky
,
K.
,
2013
, “
Experimental and Modeling Study on the Oxidation of Jet a and the n-Dodecane/Iso-Octane/n-Propylbenzene/1, 3, 5-Trimethylbenzene Surrogate Fuel
,”
Combust. Flame
,
160
(
1
), pp.
17
30
.10.1016/j.combustflame.2012.09.013
19.
Narayanaswamy
,
K.
,
Pitsch
,
H.
, and
Pepiot
,
P.
,
2016
, “
A Component Library Framework for Deriving Kinetic Mechanisms for Multi-Component Fuel Surrogates: Application for Jet Fuel Surrogates
,”
Combust. Flame
,
165
, pp.
288
309
.10.1016/j.combustflame.2015.12.013
20.
Kuti
,
O. A.
,
Yang
,
S. Y.
,
Hourani
,
N.
,
Naser
,
N.
,
Roberts
,
W. L.
,
Chung
,
S. H.
, and
Sarathy
,
S. M.
,
2015
, “
A Fundamental Investigation Into the Relationship Between Lubricant Composition and Fuel Ignition Quality
,”
Fuel
,
160
, pp.
605
613
.10.1016/j.fuel.2015.08.026
21.
Wang
,
F. C.-Y.
, and
Zhang
,
L.
,
2007
, “
Chemical Composition of Group II Lubricant Oil Studied by High-Resolution Gas Chromatography and Comprehensive Two-Dimensional Gas Chromatography
,”
Energy Fuels
,
21
(
6
), pp.
3477
3483
.10.1021/ef700407c
22.
Mitsudharmadi
,
H.
,
Maharjan
,
S.
,
Elbaz
,
A. M.
,
Qahtani
,
Y. A.
, and
Roberts
,
W. L.
,
2020
, “
Auto-Ignition of a Hexadecane Droplet Mixed With Different Octane Number Fuels at Elevated Pressures to Investigate the Pre-Ignition Behavior
,”
Energy Fuels
,
34
(
1
), pp.
806
816
.10.1021/acs.energyfuels.9b02540
23.
Distaso
,
E.
,
Amirante
,
R.
,
Calò
,
G.
,
De Palma
,
P.
,
Tamburrano
,
P.
, and
Reitz
,
R.
,
2020
, “
Predicting Lubricant Oil Induced Pre-Ignition Phenomena in Modern Gasoline Engines: The Reduced GasLube Reaction Mechanism
,”
Fuel
,
281
, p.
118709
.10.1016/j.fuel.2020.118709
24.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Stagni
,
A.
,
Pelucchi
,
M.
,
Cuoci
,
A.
, and
Faravelli
,
T.
,
2014
, “
Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass‐Derived Transportation Fuels
,”
Int. J. Chem. Kinetics
,
46
(
9
), pp.
512
542
.10.1002/kin.20867
25.
Westbrook
,
C. K.
,
Pitz
,
W. J.
,
Herbinet
,
O.
,
Curran
,
H. J.
, and
Silke
,
E. J.
,
2009
, “
A Comprehensive Detailed Chemical Kinetic Reaction Mechanism for Combustion of n-Alkane Hydrocarbons From n-Octane to n-Hexadecane
,”
Combust. Flame
,
156
(
1
), pp.
181
199
.10.1016/j.combustflame.2008.07.014
26.
Nativel
,
D.
,
Cooper
,
S. P.
,
Lipkowicz
,
T.
,
Fikri
,
M.
,
Petersen
,
E. L.
, and
Schulz
,
C.
,
2020
, “
Impact of Shock-Tube Facility-Dependent Effects on Incident-and Reflected-Shock Conditions Over a Wide Range of Pressures and Mach Numbers
,”
Combust. Flame
,
217
, pp.
200
211
.10.1016/j.combustflame.2020.03.023
27.
Cooper
,
S. P.
,
Mathieu
,
O.
,
Schoegl
,
I.
, and
Petersen
,
E. L.
,
2020
, “
High-Pressure Ignition Delay Time Measurements of a Four-Component Gasoline Surrogate and Its High-Level Blends With Ethanol and Methyl Acetate
,”
Fuel
,
275
, p.
118016
.10.1016/j.fuel.2020.118016
28.
Amadio
,
A. R.
,
Crofton
,
M. W.
, and
Petersen
,
E. L.
,
2006
, “
Test-Time Extension Behind Reflected Shock Waves Using CO2–He and C 3 H 8–He Driver Mixtures
,”
Shock Waves
,
16
(
2
), pp.
157
165
.10.1007/s00193-006-0058-6
29.
Petersen
,
E. L.
,
2009
, “
Interpreting Endwall and Sidewall Measurements in Shock-Tube Ignition Studies
,”
Combust. Sci. Technol.
,
181
(
9
), pp.
1123
1144
.10.1080/00102200902973323
30.
ANSYS
,
2018
,
ChemKin 19.1
,
Ansys
,
San Diego, CA
.
31.
Morgan
,
D. L.
, and
Kobayashi
,
R.
,
1994
, “
Direct Vapor Pressure Measurements of Ten n-Alkanes m the 10-C28 Range
,”
Fluid Phase Equilib.
,
97
, pp.
211
242
.10.1016/0378-3812(94)85017-8
32.
Petersen
,
E. L.
,
Rickard
,
M. J.
,
Crofton
,
M. W.
,
Abbey
,
E. D.
,
Traum
,
M. J.
, and
Kalitan
,
D. M.
,
2005
, “
A Facility for Gas-and Condensed-Phase Measurements Behind Shock Waves
,”
Meas. Sci. Technol.
,
16
(
9
), pp.
1716
1729
.10.1088/0957-0233/16/9/003
33.
Mullins
,
B. P.
,
1953
, “
Studies on the Spontaneous Ignition of Fuels Injected Into a Hot Air Stream. V. Ignition Delay Measurements on Hydrocarbons
,”
Fuel, Land.
,
32
, pp.
363
379
.
34.
Freeman
,
G.
, and
Lefebvre
,
A.
,
1984
, “
Spontaneous Ignition Characteristics of Gaseous Hydrocarbon-Air Mixtures
,”
Combust. Flame
,
58
(
2
), pp.
153
162
.10.1016/0010-2180(84)90090-7
35.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2002
, “
A Comprehensive Modeling Study of Iso-Octane Oxidation
,”
Combust. Flame
,
129
(
3
), pp.
253
280
.10.1016/S0010-2180(01)00373-X
You do not currently have access to this content.