Abstract

In this study, the impacts of transient time, intake air temperature, coolant temperature, and piecewise transient strategies on energy and exergy terms during typical transient process of automotive diesel engine were researched based on experiment and numerical means. The results show that first, distortion of energy and exergy is relatively significant during shorter transient time. Fuel incomplete combustion is the root of energy and exergy distortion during transient process. Second, low intake air temperature is helpful to restrain work distortion and enhance efficiency during transient process, and comprehensive effects of local equivalence ratio (ER) and local in-cylinder temperature make in-cylinder exergy destruction (IED) little change at different intake air temperature. Third, enhancing the heat insulation characteristics of heat transfer boundary during transient process can effectively improve efficiency, while weaken the distortion degree of work. Tiny differences of local ER and local in-cylinder temperature at different coolant temperature result in the little change of IED during transient process. Fourth, the influences of different piecewise transient elements on efficiency are from strong to weak: first stage transient time > stagnation time > second stage transient time. Longer first-stage transient time and stagnation time are helpful to reduce energy and exergy distortion degree. Finally, there are some similarities on IED production mechanism between transient and steady-state process, moreover, the adjustment routes of boundary parameters to realize high efficiency during transient process: longer transient time coupling stagnation time, lower intake air temperature, and higher coolant temperature.

References

1.
Xu
,
Z.
,
Fu
,
J.
,
Liu
,
J.
,
Yuan
,
Z.
,
Shu
,
J.
, and
Tan
,
L.
,
2017
, “
Comparison of In-Cylinder Combustion and Heat-Work Conversion Processes of Vehicle Engine Under Transient and Steady-State Conditions
,”
Energy Convers. Manage.
,
132
, pp.
400
409
.10.1016/j.enconman.2016.11.038
2.
Han
,
Y.
,
Zhang
,
L.
,
Liu
,
Z.
, and
Tian
,
J.
,
2016
, “
Investigation of Transient Deterioration Mechanism and Improved Method for Turbocharged Diesel Engine
,”
Energy
,
116
, pp.
250
264
.10.1016/j.energy.2016.09.088
3.
Wu
,
B.
,
Zhan
,
Q.
,
Yu
,
X.
,
Lv
,
G.
,
Nie
,
X.
, and
Liu
,
S.
,
2017
, “
Effects of Miller Cycle and Variable Geometry Turbocharger on Combustion and Emissions in Steady and Transient Cold Process
,”
Appl. Therm. Eng.
,
118
, pp.
621
629
.10.1016/j.applthermaleng.2017.02.074
4.
Lebedevas
,
S.
,
Dailydka
,
S.
,
Jastremskas
,
V.
, and
Rapalis
,
P.
,
2015
, “
The Influence of Locomotive Diesel Engine Transient Operating Modes on Energy Usage
,”
Transport. Res. Part D
,
34
, pp.
219
229
.10.1016/j.trd.2014.10.011
5.
Rakopoulos
,
D. C.
,
Rakopoulos
,
C. D.
, and
Giakoumis
,
E. G.
,
2015
, “
Impact of Properties of Vegetable Oil, Bio-Diesel, Ethanol and n-Butanol on the Combustion and Emissions of Turbocharged HDDI Diesel Engine Operating Under Steady and Transient Conditions
,”
Fuel
,
156
, pp.
1
19
.10.1016/j.fuel.2015.04.021
6.
Sun
,
W.
,
Wang
,
Q.
,
Guo
,
L.
,
Cheng
,
P.
,
Li
,
D.
, and
Yan
,
Y.
,
2019
, “
Influence of Biodiesel/Diesel Blends on Particle Size Distribution of CI Engine Under Steady/Transient Conditions
,”
Fuel
,
245
, pp.
336
344
.10.1016/j.fuel.2019.01.101
7.
van Niekerk
,
A. S.
,
Drew
,
B.
,
Larsen
,
N.
, and
Kay
,
P. J.
,
2019
, “
Influence of Blends of Diesel and Renewable Fuels on Compression Ignition Engine Emissions Over Transient Engine Conditions
,”
Appl. Energy
,
255
, p.
113890
.10.1016/j.apenergy.2019.113890
8.
Giakoumis
,
E. G.
,
2010
, “
Lubricating Oil Effects on the Transient Performance of a Turbocharged Diesel Engine
,”
Energy
,
35
(
2
), pp.
864
873
.10.1016/j.energy.2009.08.009
9.
Liu
,
Z. C.
,
Yuan
,
X.
,
Tian
,
J.
,
Han
,
Y. Q.
,
Yu
,
K. B.
, and
Teng
,
P. K.
,
2018
, “
Effects of Injection Timing on Transient Performance of a Regulated Two-Stage Turbocharged Diesel Engine With Turbine Bypass Valve
,”
Int. J. Automot. Technol.
,
19
(
5
), pp.
783
794
.10.1007/s12239-018-0075-3
10.
Liu
,
Z. C.
,
Yu
,
K. B.
,
Tian
,
J.
,
Han
,
Y. Q.
,
Qi
,
S. L.
, and
Teng
,
P. K.
,
2017
, “
Influence of Rail Pressure on a Two-Stage Turbocharged Heavy-Duty Diesel Engine Under Transient Operation
,”
Int. J. Automot. Technol.
,
18
(
1
), pp.
19
29
.10.1007/s12239-017-0002-z
11.
Liu
,
Q.
,
Liu
,
Z.
,
Han
,
Y.
,
Tian
,
J.
,
Wang
,
J.
, and
Fang
,
J.
,
2018
, “
Experimental Investigation of the Loading Strategy of an Automotive Diesel Engine Under Transient Operation Conditions
,”
Energies
,
11
(
5
), p.
1293
.10.3390/en11051293
12.
Bai
,
S.
,
Han
,
J.
,
Liu
,
M.
,
Qin
,
S.
,
Wang
,
G.
, and
Li
,
G-X.
,
2018
, “
Experimental Investigation of Exhaust Thermal Management on NOx Emissions of Heavy-Duty Diesel Engine Under the World Harmonized Transient Cycle (WHTC)
,”
Appl. Therm. Eng.
,
142
, pp.
421
432
.10.1016/j.applthermaleng.2018.07.042
13.
Zhou
,
F.
,
Fu
,
J.
,
Shu
,
J.
,
Liu
,
J.
,
Wang
,
S.
, and
Feng
,
R.
,
2016
, “
Numerical Simulation Coupling With Experimental Study on the Non-Uniform of Each Cylinder Gas Exchange and Working Processes of a Multi-Cylinder Gasoline Engine Under Transient Conditions
,”
Energy Convers. Manage.
,
123
, pp.
104
115
.10.1016/j.enconman.2016.06.028
14.
Rakopoulos
,
C. D.
,
Dimaratos
,
A. M.
,
Giakoumis
,
E. G.
, and
Rakopoulos
,
D. C.
,
2009
, “
Evaluation of the Effect of Engine, Load and Turbocharger Parameters on Transient Emissions of Diesel Engine
,”
Energy Convers. Manage.
,
50
(
9
), pp.
2381
2393
.10.1016/j.enconman.2009.05.022
15.
Krishnamoorthi
,
M.
,
Sreedhara
,
S.
, and
Prakash Duvvuri
,
P.
,
2020
, “
Pavan Prakash Duvvuri. Experimental, Numerical and Exergy Analyses of a Dual Fuel Combustion Engine Fuelled With Syngas and Biodiesel/Diesel Blends
,”
Appl. Energy
,
263
, p.
114643
.10.1016/j.apenergy.2020.114643
16.
Zhu
,
S.
,
Gu
,
Y.
,
Yuan
,
H.
,
Ma
,
Z.
, and
Deng
,
K.
,
2020
, “
Thermodynamic Analysis of the Turbocharged Marine Two-Stroke Engine Cycle With Different Scavenging Air Control Technologies
,”
Energy
,
191
, p.
116533
.10.1016/j.energy.2019.116533
17.
Mahabadipour
,
H.
,
Srinivasan
,
K. K.
, and
Krishnan
,
S. R.
,
2019
, “
An Exergy Analysis Methodology for Internal Combustion Engines Using a Multi-Zone Simulation of Dual Fuel Low Temperature Combustion
,”
Appl. Energy
,
256
, p.
113952
.10.1016/j.apenergy.2019.113952
18.
Odibi
,
C.
,
Babaie
,
M.
,
Zare
,
A.
,
Nabi
,
M. N.
,
Bodisco
,
T. A.
, and
Brown
,
R. J.
,
2019
, “
Exergy Analysis of a Diesel Engine With Waste Cooking Biodiesel and Triacetin
,”
Energy Convers. Manage.
,
198
, p.
111912
.10.1016/j.enconman.2019.111912
19.
Mattson
,
J.
,
Burnete
,
N. V.
,
Depcik
,
C.
,
Moldovanu
,
D.
, and
Burnete
,
N.
,
2019
, “
Second Law Analysis of Waste Cooking Oil Biodiesel Versus ULSD During Operation of a CI Engine
,”
Fuel
,
255
, p.
115753
.10.1016/j.fuel.2019.115753
20.
Murugapoopathi
,
S.
, and
Vasudevan
,
D.
,
2019
, “
Energy and Exergy Analysis on Variable Compression Ratio Multi-Fuel Engine
,”
J. Therm. Anal. Calorim.
,
136
(
1
), pp.
255
266
.10.1007/s10973-018-7761-2
21.
Eyal
,
A.
, and
Tartakovsky
,
L.
,
2020
, “
Second-Law Analysis of the Reforming-Controlled Compression Ignition
,”
Appl. Energy
,
263
, p.
114622
.10.1016/j.apenergy.2020.114622
22.
Kumar Sharma
,
P.
,
Sharma
,
D.
,
Lal Soni
,
S.
,
Jhalani
,
A.
,
Singh
,
D.
, and
Sharma
,
S.
,
2020
, “
Energy, Exergy, and Emission Analysis of a Hydroxyl Fueled Compression Ignition Engine Under Dual Fuel Mode
,”
Fuel
,
265
, p.
116923
.10.1016/j.fuel.2019.116923
23.
Wang
,
P.
,
Li
,
Y.
,
Duan
,
X.
,
Liu
,
J.
,
Wang
,
S.
,
Zou
,
P.
, and
Fang
,
Y.
,
2020
, “
Experimental Investigation of the Effects of CR, Hydrogen Addition Strategies on Performance, Energy and Exergy Characteristics of a Heavy-Duty NGSI Engine Fueled With 99% Methane Content
,”
Fuel
,
259
, p.
116212
.10.1016/j.fuel.2019.116212
24.
Valencia Ochoa
,
G.
,
Cárdenas Gutierrez
,
J.
, and
Duarte Forero
,
J.
,
2020
, “
Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine
,”
Resour.-Basel
,
9
(
1
), p.
2
.10.3390/resources9010002
25.
Mahabadipour
,
H.
,
Srinivasan
,
K. K.
, and
Krishnan
,
S. R.
,
2017
, “
A Second Law-Based Framework to Identify High Efficiency Pathways in Dual Fuel Low Temperature Combustion
,”
Appl. Energy
,
202
, pp.
199
212
.10.1016/j.apenergy.2017.05.154
26.
Liu
,
C.
,
Liu
,
Z.
,
Tian
,
J.
,
Han
,
Y.
,
Xu
,
Y.
, and
Yang
,
Z.
,
2019
, “
Comprehensive Investigation of Injection Parameters Effect on a Turbocharged Diesel Engine Based on Detailed Exergy Analysis
,”
Appl. Therm. Eng.
,
154
, pp.
343
357
.10.1016/j.applthermaleng.2019.03.116
27.
Wilson John
,
M. R.
, and
Ganapathy Subramanian
,
L. R.
,
2020
, “
Thermodynamic Analysis of a Compression Ignition Engine With Latent Heat Storage Unit
,”
Appl. Therm. Eng.
,
167
, p.
114697
.10.1016/j.applthermaleng.2019.114697
28.
Sun
,
P.
,
Liu
,
Z.
,
Yu
,
X.
,
Yao
,
C.
,
Guo
,
Z.
, and
Yang
,
S.
,
2019
, “
Experimental Study on Heat and Exergy Balance of a Dual-Fuel Combined Injection Engine With Hydrogen and Gasoline
,”
Int. J. Hydrogen Energy
,
44
(
39
), pp.
22301
22315
.10.1016/j.ijhydene.2019.06.149
29.
Das
,
A. K.
,
Hansdah
,
D.
,
Mohapatra
,
A. K.
, and
Panda
,
A. K.
,
2020
, “
Energy, Exergy and Emission Analysis on a DI Single Cylinder Diesel Engine Using Pyrolytic Waste Plastic Oil Diesel Blend
,”
J. Energy Inst.
,
93
(
4
), pp.
1624
1633
.10.1016/j.joei.2020.01.024
30.
Dhyani
,
V.
, and
Subramanian
,
K. A.
,
2019
, “
Experimental Based Comparative Exergy Analysis of a Multi-Cylinder Spark Ignition Engine Fueled With Different Gaseous (CNG, HCNG, and Hydrogen) Fuels
,”
Int. J. Hydrogen Energy
,
44
(
36
), pp.
20440
20451
.10.1016/j.ijhydene.2019.05.229
31.
Karthickeyan
,
V.
,
Thiyagarajan
,
S.
,
Ashok
,
B.
,
Edwin Geo
,
V.
, and
Azad
,
A. K.
,
2020
, “
Experimental Investigation of Pomegranate Oil Methyl Ester in Ceramic Coated Engine at Different Operating Condition in Direct Injection Diesel Engine With Energy and Exergy Analysis
,”
Energy Convers. Manage.
,
205
, p.
112334
.10.1016/j.enconman.2019.112334
32.
Liu
,
C.
,
Liu
,
Z.
,
Tian
,
J.
,
Xu
,
Y.
,
Yang
,
Z.
, and
Wang
,
P.
,
2020
, “
Investigations of Energy, Exergy Distribution Characteristics of Overall Working Conditions and Effect of Key Boundary Parameters on Residual Energy Availability in an Automotive Turbocharged Diesel Engine
,”
Appl. Therm. Eng.
,
174
, p.
115352
.10.1016/j.applthermaleng.2020.115352
33.
Özkan
,
M.
,
2015
, “
A Comparative Study on Energy and Exergy Analyses of a CI Engine Performed With Different Multiple Injection Strategies at Part Load: Effect of Injection Pressure
,”
Entropy
,
17
(
1
), pp.
244
263
.10.3390/e17010244
34.
Rakopoulos
,
D. C.
,
Rakopoulos
,
C. D.
,
Kosmadakis
,
G. M.
, and
Giakoumis
,
E. G.
,
2020
, “
Exergy Assessment of Combustion and EGR and Load Effects in DI Diesel Engine Using Comprehensive Two-Zone Modeling
,”
Energy
,
202
, p.
117685
.10.1016/j.energy.2020.117685
35.
Wang
,
Z.
,
Du
,
G.
,
Li
,
M.
,
Xu
,
Y.
, and
Zhang
,
F.
,
2020
, “
Theoretical Analyses of Heat Balance in a Diesel/Natural Gas Dual-Fuel Engine at Low and Medium Loads Based on Experimental Values
,”
ASME J. Eng. Gas Turbines Power
,
142
(
5
), p.
051010
.10.1115/1.4046760
36.
Liu
,
C.
,
Liu
,
Z.
,
Tian
,
J.
,
Xu
,
Y.
,
Yang
,
Z.
, and
Wang
,
P.
,
2020
, “
Detailed Study of Key Boundary Parameters Influence on a Turbocharged Diesel Engine Based on Thermodynamic Analysis
,”
Appl. Therm. Eng.
,
165
, p.
114553
.10.1016/j.applthermaleng.2019.114553
37.
Li
,
Y.
,
Jia
,
M.
,
Chang
,
Y.
, and
Xu
,
G.
,
2017
, “
Comparing the Exergy Destruction of Methanol and Gasoline in Reactivity Controlled Compression Ignition (RCCI) Engine
,”
SAE
Paper No. 2017-01-0758.10.4271/2017-01-0758
38.
Li
,
Y.
,
Jia
,
M.
,
Kokjohn
,
S. L.
,
Chang
,
Y.
, and
Reitz
,
R. D.
,
2018
, “
Comprehensive Analysis of Exergy Destruction Sources in Different Engine Combustion Regimes
,”
Energy
,
149
, pp.
697
708
.10.1016/j.energy.2018.02.081
You do not currently have access to this content.