Abstract

The challenge in the design of oxy-combustors for direct-fired supercritical CO2 (sCO2) cycles is in addressing disparate performance metrics and objectives. Key design parameters to consider include, among others, injector design for mixing and flame stability, split of recycled CO2 diluent between injectors and cooling films, target flame temperatures to control noncondensable products, and strategies to inject the diluent CO2 for film cooling and thermal control. In order to support novel oxy-combustor designs, a high-fidelity yet numerically efficient modeling framework based on the CRUNCH CFD® flow solver is presented, featuring key physics-based submodels relevant in this regime. For computational efficiency in modeling large kinetic sets, a flamelet/progress variable (FPV) based tabulated-chemistry approach is utilized featuring a three-stream extension to allow for the simulation of the CO2 film cooling stream in addition to the fuel and oxidizer streams. Finite rate chemistry effects are modeled in terms of multiple progress variables for the primary flame as well as for slower-evolving chemical species such as NOx and SOx contaminants. Real fluid effects are modeled using advanced equations of states. The predictive capabilities of this computationally tractable design support tool are demonstrated on a conceptual injector design for an oxy-combustor operating near 30 MPa. Simulations results provide quantitative feedback on the effectiveness of the film cooling as well as the level of contaminants (CO, NO, and N) in the exhaust due to impurities entering from the injectors. These results indicate that this framework would be a useful tool for refining and optimizing the oxy-combustor designs as well as risk mitigation analyses.

References

1.
Allam
,
R. J.
,
Fetvedt
,
J. E.
,
Forrest
,
B. A.
, and
Freed
,
D. A.
,
2014
, “
The Oxy-Fuel, Supercritical CO2 Allam Cycle: New Cycle Developments to Produce Even Lower-Cost Electricity From Fossil Fuels Without Atmospheric Emissions
,”
ASME
Paper No. GT2014-26952.10.1115/GT2014-26952
2.
White
,
C.
, and
Weiland
,
N.
,
2018
, “
Preliminary Cost and Performance Results for a Natural Gas-Fired Direct SCO2 Power Plant
,”
Sixth International Supercritical CO2 Power Cycles Symposium
,
Pittsburgh, PA
,
Mar. 27–29
. http://sco2symposium.com/papers2018/power-plants-applications/083_Paper.pdf
3.
Strakey
,
P.
,
2018
, “
Oxy-Combustion Flame Fundamentals for Supercritical CO2 Power Cycles
,”
Sixth International Supercritical CO2 Power Cycles Symposium
,
Pittsburgh, PA
,
Mar. 27–29
.http://sco2symposium.com/papers2018/oxy-combustion/119_Pres.pdf
4.
Abdul-Sater
,
H.
,
Lenertz
,
J.
,
Bonilha
,
C.
,
Lu
,
X.
, and
Fetvedt
,
J.
, “
A CFD Simulation of Coal Syngas Oxy-Combustion in a High Pressure Supercritical CO2 Environment
,”
ASME
Paper No. GT2017-63821.10.1115/GT2017-63821
5.
Barlow
,
R. S.
, and
Frank
,
J. H.
,
1998
, “
Effects of Turbulence on Species Mass Fractions in Methane/Air Jet Flames
,”
Symp. (Int.) Combust.
,
27
(
1
), pp.
1087
1095
.10.1016/S0082-0784(98)80510-9
6.
Hosangadi
,
A.
,
Sachdev
,
J.
, and
Venkateswaran
,
S.
,
2012
, “
Improved Flux Formulations for Unsteady Low Mach Number Flows
,” Seventh International Conference on Computational Fluid Dynamics, Big Island, Hawaii, July 9– 13, Paper No.
ICCFD7-2202
.10.2514/6.2012-3067
7.
Xia
,
G.
,
Sankaran
,
V.
,
Li
,
D.
, and
Merkle
,
C. L.
,
2006
, “
Modeling of Turbulent Mixing Layer Dynamics in Ultra-High Pressure Flows
,”
AIAA
Paper No. 2006-3729.10.2514/6.2006-3729
8.
Ely
,
J. F.
, and
Hanley
,
H. J. M.
,
1981
, “
Prediction of Transport Properties—1: Viscosity of Fluids and Mixtures
,”
Ind. Eng. Chem. Fundam.
,
20
(
4
), pp.
323
332
.10.1021/i100004a004
9.
Ely
,
J. F.
, and
Hanley
,
H. J. M.
,
1983
, “
Prediction of Transport Properties—2: Thermal Conductivity of Pure Fluids and Mixtures
,”
Ind. Eng. Chem. Fundam.
,
22
(
1
), pp.
90
97
.10.1021/i100009a016
10.
Hosangadi
,
A.
,
Liu
,
Z.
,
Weathers
,
T.
, and
Ahuja
,
V.
,
2018
, “
Numerical Simulations of CO2 Compressors: Subcritical Inlet Conditions
,”
Sixth International Supercritical CO2 Power Cycles Symposium
,
Pittsburgh, PA
,
Mar. 27–29
.http://sco2symposium.com/papers2018/turbomachinery/007_Paper.pdf
11.
Arunajatesan
,
S.
, and
Sinha
,
N.
,
2003
, “
Hybrid RANS-LES Modeling for Cavity Aeroacoustics Predictions
,”
Int. J. Aeroacoustics
,
2
(
1
), pp.
65
91
.10.1260/147547203322436944
12.
Oijen
,
J. V.
, and
Goey
,
L. D.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.10.1080/00102200008935814
13.
Muralidharan
,
B.
,
Zambon
,
A. C.
,
Hosangadi
,
A.
, and
Calhoon
,
W. H.
,
2018
, “
Application of a Progress Variable Based Approach for Modeling Non-Premixed/Partially Premixed Combustion Under High-Pressure Conditions
,”
AIAA
Paper No. 2018-4560.10.2514/6.2018-4560
14.
Muralidharan
,
B.
,
Zambon
,
A. C.
, and
Hosangadi
,
A.
,
2019
, “
Extension of the Flamelet Generated Manifold Approach to Account for Heat Losses in Multiphase Combustor Simulations
,”
AIAA
Paper No. 2019-3866.10.2514/6.2019-3866
15.
Sung
,
C. J.
,
Law
,
C. K.
, and
Chen
,
J. Y.
,
1998
, “
An Augmented Reduced Mechanism for Methane Oxidation With Comprehensive Global Parametric Validation
,”
Symp. (Int.) Combust.
,
27
(
1
), pp.
295
304
.10.1016/S0082-0784(98)80416-5
16.
Zambon
,
A. C.
, and
Chelliah
,
H. K.
,
2007
, “
Explicit Reduced Reaction Models for Ignition, Flame Propagation, and Extinction of C2H4/CH4/H2 and Air Systems
,”
Combust. Flame
,
150
(
1–2
), pp.
71
91
.10.1016/j.combustflame.2007.03.003
17.
Pecquery
,
F.
,
Moureau
,
V.
,
Lartigue
,
G.
,
Vervisch
,
L.
, and
Roux
,
A.
,
2013
, “
Modelling Nitrogen Oxides Emissions in Turbulent Flames With Air Dilution: Application to LES of a Non-Premixed Jet-Flame
,”
Combust. Flame
,
161
(
2
), pp.
496
509
.10.1016/j.combustflame.2013.09.018
18.
Ajmani
,
K.
,
Mongia
,
H. C.
, and
Lee
,
P.
,
2016
, “
CFD Based Design of a Filming Injector for N+3 Combustors
,”
AIAA
Paper No. 2016-4783.10.2514/6.2016-4783
19.
Hosangadi
,
A.
,
Liu
,
Z.
,
Weathers
,
T.
,
Ahuja
,
V.
, and
Busby
,
J.
,
2019
, “
Modeling Multi-Phase Effects in CO2 Compressors at Subcritical Inlet Conditions
,”
ASME J. Eng. Gas Turbines Power
,
141
(
8
), p.
081005
.10.1115/1.4042975
20.
Manikantachari
,
K. R. V.
,
Vesely
,
L.
,
Martin
,
S.
,
Bobren-Diaz
,
J. O.
, and
Vasu
,
S.
,
2018
, “
Reduced Chemical Kinetic Mechanisms for Oxy/Methane Supercritical CO2 Combustor Simulations
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092202
.10.1115/1.4039746
21.
NETL
,
2012
, “
Quality Guidelines for Energy System Studies: Specification for Selected Feedstocks
,” National Energy Technology Laboratory, Pittsburgh, PA, Report No.
DOE/NETL-341/0118112
.10.2172/1557271
You do not currently have access to this content.