Abstract

Using a split injection of wet ethanol, where a portion of the fuel is injected during the compression stroke, has been shown to be an effective way to enable thermally stratified compression ignition (TSCI), an advanced combustion mode that aims to control the heat release process by enhancing thermal stratification, thereby extending the load range of low temperature combustion (LTC). Wet ethanol is the ideal fuel candidate to enable TSCI because it has a high latent heat of vaporization and low equivalence ratio sensitivity. Previous work has shown “early” compression stroke injections (−150 to −100 deg aTDC) have the potential to control the start of combustion (SOC) while “mid” compression stroke injections (−90 to −30 deg aTDC) have the potential to control in-cylinder thermal stratification, thereby controlling the heat release rate. In this work, a mixture of 80% ethanol and 20% water by mass is used to further study the injection strategy of TSCI combustion. Additionally, the impact of external, cooled exhaust gas recirculation (EGR), and intake boost on the effectiveness of a TSCI with wet ethanol to control the heat release process are investigated. It was found that neither external, cooled EGR, nor intake boost level has any impact on the effectiveness of the compression stroke injection(s) at controlling the burn rate of TSCI. External, cooled EGR has the potential to increase the overall tailpipe combustion efficiency, while intake boost has the potential to decrease NOx emissions at the expense of combustion efficiency by lowering the global equivalence ratio.

References

1.
Najt
,
P.
, and
Foster
,
D.
,
1983
, “
Compression-Ignited Homogeneous Charge Combustion
,”
SAE
Paper No. 830264.10.4271/830264
2.
Thring
,
R.
,
1989
, “
Homogeneous-Charge Compression-Ignition (HCCI) Engines
,”
SAE
Paper No. 892068.10.4271/892068
3.
Stanglmaier
,
R.
, and
Roberts
,
C.
,
1999
, “
Homogeneous Charge Compression Ignition (HCCI): Benefits, Compromises, and Future Engine Applications
,”
SAE
Paper No. 1999-01-3682.10.4271/1999-01-3682
4.
Christensen
,
M.
, and
Johansson
,
B.
,
1999
, “
Homogeneous Charge Compression Ignition With Water Injection
,”
SAE
Paper No. 1999-01-0182.10.4271/1999-01-0182
5.
Yao
,
M.
,
Zheng
,
Z.
, and
Liu
,
H.
,
2009
, “
Progress and Recent Trends in Homogeneous Charge Compression Ignition (HCCI) Engines
,”
Prog. Energy Combust. Sci.
,
35
(
5
), pp.
398
437
.10.1016/j.pecs.2009.05.001
6.
Dec
,
J.
, and
Hwang
,
W.
, “
Characterizing the Development of Thermal Stratification in an HCCI Engine Using Planar-Imaging Thermometry
,”
SAE Int. J. Engines
,
2
(
1
), pp.
421
438
.
7.
Dronniou
,
N.
, and
Dec
,
J.
,
2012
, “
Investigating the Development of Thermal Stratification From the Near-Wall Regions to the Bulk-Gas in an HCCI Engine With Planar Imaging Thermometry
,”
SAE Int. J. Engines
,
5
(
3
), pp.
1046
1074
.10.4271/2012-01-1111
8.
Snyder
,
J.
,
Dronniou
,
N.
,
Dec
,
J.
, and
Hanson
,
R.
,
2011
, “
PLIF Measurements of Thermal Stratification in an HCCI Engine Under Fired Operation
,”
SAE Int. J. Engines
,
4
(
1
), pp.
1669
1688
.10.4271/2011-01-1291
9.
Lopez Pintor
,
D.
,
Dec
,
J.
, and
Gentz
,
G.
,
2019
, “
Φ-Sensitivity for LTGC Engines: Understanding the Fundamentals and Tailoring Fuel Blends to Maximize This Property
,”
SAE
Paper No. 2019-01-0961.10.4271/2019-01-0961.
10.
Kokjohn
,
S.
,
Hanson
,
R.
,
Splitter
,
D. A.
, nd., and
Reitz
,
R.
,
2011
, “
Fuel Reactivity Controlled Compression Ignition (RCCI): A Pathway to Controlled High-Efficiency Clean Combustion
,”
Int. J. Engine Res.
,
12
(
3
), pp.
209
226
.10.1177/1468087411401548
11.
Dempsey
,
A.
,
Walker
,
N.
, and
Reitz
,
R.
,
2013
, “
Effect of Cetane Improvers on Gasoline, Ethanol, and Methanol Reactivity and the Implications for RCCI Combustion
,”
SAE Int. J. Fuels Lubr.
,
6
(
1
), pp.
170
187
.10.4271/2013-01-1678
12.
Dec
,
J.
,
Yang
,
Y.
, and
Dronniou
,
N.
,
2011
, “
Boosted HCCI—Controlling Pressure-Rise Rates for Performance Improvements Using Partial Fuel Stratification With Conventional Gasoline
,”
SAE Int. J. Engines
,
4
(
1
), pp.
1169
1189
.10.4271/2011-01-0897
13.
Sjoberg
,
M.
, and
Dec
,
J.
,
2006
, “
Smoothing HCCI Heat-Release Rates Using Partial Fuel Stratification With Two-Stage Ignition Fuels
,”
SAE
Paper No. 2006-01-0629.10.4271/2006-01-0629
14.
Sjoberg
,
M.
, and
Dec
,
J.
,
2011
, “
Smoothing HCCI Heat Release With Vaporization-Cooling-Induced Thermal Stratification Using Ethanol
,”
SAE Int. J. Fuels Lubr.
,
5
(
1
), pp.
7
27
.10.4271/2011-01-1760
15.
Kolodziej
,
C.
,
Kodavasal
,
J.
,
Ciatti
,
S.
,
Som
,
S.
, Shidore, N., and Delhom, J.,
2015
, “
Achieving Stable Engine Operation of Gasoline Compression Ignition Using 87 AKI Gasoline Down to Idle
,”
SAE
Paper No. 2015-01-0832.10.4271/2015-01-0832
16.
Liu
,
X.
,
Goyal
,
H.
,
Kook
,
S.
, and
Ikeda
,
Y.
,
2019
, “
Triple Injection Strategies for Gasoline Compression Ignition (GCI) Combustion in a Single-Cylinder Small-Bore Common-Rail Diesel Engine
,”
SAE
Paper No. 2019-01-1148.10.4271/2019-01-1148
17.
Aoyama
,
T.
,
Hattori
,
Y.
,
Mizuta
,
J.
, and
Sato
,
Y.
,
1996
, “
An Experimental Study on Premixed-Charge Compression Ignition Gasoline Engine
,”
SAE
Technical Paper 960081.10.4271/960081
18.
Babajimopoulos
,
A.
,
Assanis
,
D. N.
,
Flowers
,
D. L.
,
Aceves
,
S. M.
, and
Hessel
,
R. P.
,
2005
, “
A Fully Coupled Computational Fluid Dynamics and Multi-Zone Model With Detailed Chemical Kinetics for the Simulation of Premixed Charge Compression Ignition Engines
,”
Int. J. Engine Res.
,
6
(
5
), pp.
497
512
.10.1243/146808705X30503
19.
Noehre
,
C.
,
Andersson
,
M.
,
Johansson
,
B.
, and
Hultqvist
,
A.
,
2006
, “
Characterization of Partially Premixed Combustion
,”
SAE
Technical Paper 2006-01-3412.10.4271/2006-01-3412
20.
Li
,
C.
,
Xu
,
L.
,
Bai
,
X.
,
Tunestal
,
P.
, and Tuner, M.,
2018
, “
Effect of Piston Geometry on Stratification Formation in the Transition From HCCI to PPC
,”
SAE
Paper No. 2018-01-1800.10.4271/2018-01-1800
21.
Aziz
,
A.
,
Li
,
C.
,
Verhelst
,
S.
, and
Tuner
,
M.
,
2019
, “
The Relevance of Different Fuel Indices to Describe Autoignition Behaviour of Gasoline in Light Duty DICI Engine Under PPC Mode
,”
SAE
Technical Paper 2019-01-1147.10.4271/2019-01-1147
22.
Rahimi Boldaji
,
M.
,
Sofianopoulos
,
A.
,
Mamalis
,
S.
, and
Lawler
,
B.
,
2018
, “
A CFD Investigation of the Effects of Fuel Split Fraction on Advanced Low Temperature Combustion: Comparing a Primary Reference Fuel Blend and Ethanol
,”
Front. Mech. Eng.
,
4
.10.3389/fmech.2018.00006
23.
Lawler
,
B.
,
Splitter
,
D.
,
Szybist
,
J.
, and
Kaul
,
B.
,
2017
, “
Thermally Stratified Compression Ignition: A New Advanced Low Temperature Combustion Mode With Load Flexibility
,”
Appl. Energy
,
189
, pp.
122
132
.10.1016/j.apenergy.2016.11.034
24.
Rahimi Boldaji
,
M.
,
Sofianopoulos
,
A.
,
Mamalis
,
S.
, and
Lawler
,
B.
,
2018
, “
Effects of Mass, Pressure, and Timing of Injection on the Efficiency and Emissions Characteristics of TSCI Combustion With Direct Water Injection
,”
SAE
Paper No. 2018-01-0178.10.4271/2018-01-0178
25.
Gainey
,
B.
,
Hariharan
,
D.
,
Yan
,
Z.
,
Zilg
,
S.
,
Rahimi Boldaji
,
M.
, and
Lawler
,
B.
,
2020
, “
A Split Injection of Wet Ethanol to Enable Thermally Stratified Compression Ignition
,”
Int. J. Engine Res.
,
21
(
8
), pp.
1441
1453
.10.1177/1468087418810587
26.
Rahimi Boldaji
,
M.
,
Gainey
,
B.
, and
Lawler
,
B.
,
2019
, “
Thermally Stratified Compression Ignition Enabled by Wet Ethanol With a Split Injection Strategy: A CFD Simulation Study
,”
Appl. Energy
,
235
, pp.
813
826
.10.1016/j.apenergy.2018.11.009
27.
Gainey
,
B.
,
Yan
,
Z.
,
Gohn
,
J.
, and
Rahimi Boldaji
,
M.
,
2019
, “
TSCI With Wet Ethanol: An Investigation of the Effects of Injection Strategy on a Diesel Engine Architecture
,”
SAE
Paper No. 2019-01-1146.10.4271/2019-01-1146
28.
Sjoberg
,
M.
, and
Dec
,
J.
,
2010
, “
Ethanol Autoignition Characteristics and HCCI Performance for Wide Ranges of Engine Speed, Load and Boost
,”
SAE Int. J. Engines
,
3
(
1
), pp.
84
106
.10.4271/2010-01-0338
29.
Svensson
,
E.
, and
Verhelst
,
S.
,
2019
, “
Simulation Based Investigation of Achieving Low Temperature Combustion With Methanol in a Direct Injected Compression Ignition Engine
,”
SAE
Paper No. 2019-01-1152.10.4271/2019-01-1152
30.
Saffy
,
H.
,
Northrop
,
W.
,
Kittelson
,
D.
, and
Boies
,
A.
,
2015
, “
Energy, Carbon Dioxide and Water Use Implications of Hydrous Ethanol Production
,”
Energy Convers. Manage.
,
105
, pp.
900
907
.10.1016/j.enconman.2015.08.039
31.
Flowers
,
D.
,
Aceves
,
S.
, and
Frias
,
J.
,
2007
, “
Improving Ethanol Life Cycle Energy Efficiency by Direct Utilization of Wet Ethanol in HCCI Engines
,”
SAE
Paper No. 2007-01-1867.10.4271/2007-01-1867
32.
Lanzanova
,
T.
,
Vielmo
,
H.
,
Sari
,
R.
, and
Dornelles
,
H.
,
2013
, “
Performance Analysis of a Spark Ignited Engine Running on Different Water-in-Ethanol Mixtures
,”
SAE
Paper No. 2013-36-0202.10.4271/2013-36-0202
33.
Martins
,
M.
,
Lanzanova
,
T.
, and
Sari
,
R.
,
2015
, “
Low Cost Wet Ethanol for Spark-Ignited Engines: Further Investigations
,”
SAE Int. J. Fuels Lubr.
,
8
(
2
), pp.
367
373
.10.4271/2015-01-0954
34.
Koupaie
,
M. M.
,
Cairns
,
A.
,
Vafamehr
,
H.
, and
Lanzanova
,
T. D. M.
,
2019
, “
A Study of Hydrous Ethanol Combustion in an Optical Central Direct Injection Spark Ignition Engine
,”
Appl. Energy
,
237
, pp.
258
269
.10.1016/j.apenergy.2018.12.093
35.
Ambrós
,
W. M.
,
Lanzanova
,
T. D. M.
,
Fagundez
,
J. L. S.
,
Sari
,
R. L.
,
Pinheiro
,
D. K.
,
Martins
,
M. E. S.
, and
Salau
,
N. P. G.
,
2015
, “
Experimental Analysis and Modeling of Internal Combustion Engine Operating With Wet Ethanol
,”
Fuel
,
158
, pp.
270
278
.10.1016/j.fuel.2015.05.009
36.
Martins
,
M.
,
Fischer
,
I.
,
Gusberti
,
F.
, and
Sari
,
R.
,
2017
, “
HCCI of Wet Ethanol on a Dedicated Cylinder of a Diesel Engine
,”
SAE
Paper No. 2017-01-0733.10.4271/2017-01-0733
37.
Saxena
,
S.
,
Schneider
,
S.
,
Aceves
,
S.
, and
Dibble
,
R.
,
2012
, “
Wet Ethanol in HCCI Engines With Exhaust Heat Recovery to Improve the Energy Balance of Ethanol Fuels
,”
Appl. Energy
,
98
, pp.
448
457
.10.1016/j.apenergy.2012.04.007
38.
Mack
,
J. H.
,
Aceves
,
S. M.
, and
Dibble
,
R. W.
,
2009
, “
Demonstrating Direct Use of Wet Ethanol in a Homogeneous Charge Compression Ignition (HCCI) Engine
,”
Energy
,
34
(
6
), pp.
782
787
.10.1016/j.energy.2009.02.010
39.
Gainey
,
B.
,
Gohn
,
J.
,
Yan
,
Z.
, Malik, K., Rahimi-Boldaji, M., and
Lawler
,
B.
,
2019
, “HCCI With Wet Ethanol: Investigating the Charge Cooling Effect of a High Latent Heat of Vaporization Fuel in LTC,”
SAE
Technical Paper 2019-24-0024.10.4271/2019-24-0024
40.
Dempsey
,
A. B.
,
Das Adhikary
,
B.
,
Viswanathan
,
S.
, and
Reitz
,
R. D.
,
2012
, “
Reactivity Controlled Compression Ignition Using Premixed Hydrated Ethanol and Direct Injection Diesel
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
082806
.10.1115/1.4006703
41.
Gainey
,
B.
,
Longtin
,
J. P.
, and
Lawler
,
B.
,
2019
, “
A Guide to Uncertainty Quantification for Experimental Engine Research and Heat Release Analysis
,”
SAE J. Engines
, 12(5), pp.
509
523
.https://go.gale.com/ps/anonymous?id=GALE%7CA611825421&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=19463936&p=AONE&sw=w
42.
Graham
,
L.
,
Belisle
,
S.
, and
Baas
,
C. L.
,
2008
, “
Emissions From Light Duty Gasoline Vehicles Operating on Low Blend Ethanol Gasoline and E85
,”
Atmos. Environ.
,
42
(
19
), pp.
4498
4516
.10.1016/j.atmosenv.2008.01.061
43.
Dec
,
J.
,
Sjoberg
,
M.
, and
Hwang
,
W.
,
2007
, “
The Effects of EGR and Its Constituents on the Autoignition of Single- and Two-Stage Fuels
,”
13th Diesel Engine-Efficiency and Emissions Research Conference
, Detroit, MI, Aug. 13–16.https://www.energy.gov/sites/prod/files/2014/03/f8/deer07_dec.pdf
44.
Da Silva
,
G.
,
Bozzelli
,
J.
,
Liang
,
L.
, and
Farrell
,
J.
, “
Ethanol Oxidation: Kinetics of the α-Hydroxyethyl Radical + O2 Reaction
,”
J. Phys. Chem. A
, 113(31), pp.
8923
8933
.10.1021/jp903210a
45.
Dec
,
J.
, and
Yang
,
Y.
,
2010
, “
Boosted HCCI for High Power Without Engine Knock and With Ultra-Low NOx Emissions - Using Conventional Gasoline
,”
SAE Int. J. Engines
,
3
(
1
), pp.
750
767
.10.4271/2010-01-1086
46.
Eng
,
J.
,
2002
, “Characterization of Pressure Waves in HCCI Combustion,”
SAE
Paper No. 2002-01-2859.10.4271/2002-01-2859
47.
Makkapati
,
S.
, and
Curtis
,
E.
,
2014
, “
Boosted HCCI - Experimental Observations in a Single Cylinder Engine
,”
SAE
Paper No. 2014-01-1277.10.4271/2014-01-1277
You do not currently have access to this content.