Abstract

The Morton effect (ME) is a synchronous vibration problem in turbomachinery caused by the nonuniform viscous heating around the journal circumference, and its resultant thermal bow (TB) and ensuing synchronous vibration. This paper treats the unconventional application of the SFD for the mitigation of ME-induced vibration. Installing a properly designed squeeze film damper (SFD) may change the rotor's critical speed location, damping, and deflection shape, and thereby suppress the vibration caused by the ME. The effectiveness of the SFD on suppressing the ME is tested via linear and nonlinear simulation studies employing a three-dimensional (3D) thermohydrodynamic (THD) tilting pad journal bearing (TJPB), and a flexible, Euler beam rotor model. The example rotor model is for a compressor that experimentally exhibited an unacceptable vibration level along with significant journal differential heating near 8000 rpm. The SFD model includes fluid inertia and is installed on the nondrive end bearing location where the asymmetric viscous heating of the journal is highest. The influence of SFD cage stiffness is evaluated.

References

1.
Tong
,
X.
,
Palazzolo
,
A.
, and
Suh
,
J.
,
2017
, “
A Review of the Rotordynamic Thermally Induced Synchronous Instability (Morton) Effect
,”
ASME. Appl. Mech. Rev.
,
69
(
6
), p.
060801
.10.1115/1.4037216
2.
de Jongh
,
F.
,
2008
, “
The Synchronous Rotor Instability Phenomenon—Morton Effect
,”
37th Turbomachinery Symposium
,
Houston, TX
, Sept. 8–11, pp.
159
167
.10.21423/R1606D
3.
1998
, “
Application of a Heat Barrier Sleeve to Prevent Synchronous Rotor Instability
,”
27th Turbomachinery Symposium
,
F.
de Jongh
, and
P.
Van Der Hoeven
, eds., Houston, TX, Sept. 20–24, pp.
17
26
.10.21423/R1QH2Q
4.
Keogh
,
P.
, and
Morton
,
P.
,
1994
, “
The Dynamic Nature of Rotor Thermal Bending Due to Unsteady Lubricant Shearing Within a Bearing
,”
Proc. R. Soc. London, Ser. A
,
445
(
1924
), pp.
273
290
.10.1098/rspa.1994.0061
5.
Lee
,
J. G.
, and
Palazzolo
,
A.
,
2012
, “
Morton Effect Cyclic Vibration Amplitude Determination for Tilt Pad Bearing Supported Machinery
,”
ASME. J. Tribol.
,
135
(
1
), p.
011701
.10.1115/1.4007884
6.
Suh
,
J.
, and
Palazzolo
,
A.
,
2015
, “
Three-Dimensional Dynamic Model of TEHD Tilting-Pad Journal Bearing—Part I: Theoretical Modeling
,”
ASME. J. Tribol.
,
137
(
4
), p.
041703
.10.1115/1.4030020
7.
Suh
,
J.
, and
Palazzolo
,
A.
,
2015
, “
Three-Dimensional Dynamic Model of TEHD Tilting-Pad Journal Bearing—Part II: Parametric Studies
,”
ASME. J. Tribol.
,
137
(
4
), p.
041704
.10.1115/1.4030021
8.
Suh
,
J.
, and
Palazzolo
,
A.
,
2014
, “
Three-Dimensional Thermohydrodynamic Morton Effect Simulation—Part I: Theoretical Model
,”
ASME. J. Tribol.
,
136
(
3
), p.
031706
.10.1115/1.4027309
9.
Suh
,
J.
, and
Palazzolo
,
A.
,
2014
, “
Three-Dimensional Thermohydrodynamic Morton Effect Analysis—Part II: Parametric Studies
,”
ASME. J. Tribol.
,
136
(
3
), p.
31707
.10.1115/1.4027310
10.
Tong
,
X.
,
Palazzolo
,
A.
, and
Suh
,
J.
,
2016
, “
Rotordynamic Morton Effect Simulation With Transient, Thermal Shaft Bow
,”
ASME. J. Tribol.
,
138
(
3
), p.
031705
.10.1115/1.4032961
11.
Tong
,
X.
, and
Palazzolo
,
A.
,
2016
, “
Double Overhung Disk and Parameter Effect on Rotordynamic Synchronous Instability—Morton Effect—Part I: Theory and Modeling Approach
,”
ASME. J. Tribol.
,
139
(
1
), p.
011705
.10.1115/1.4033888
12.
Tong
,
X.
, and
Palazzolo
,
A.
,
2016
, “
Double Overhung Disk and Parameter Effect on Rotordynamic Synchronous Instability—Morton Effect—Part II: Occurrence and Prevention
,”
ASME. J. Tribol.
,
139
(
1
), p.
011706
.10.1115/1.4033892
13.
Tong
,
X.
, and
Palazzolo
,
A.
,
2018
, “
Tilting Pad Gas Bearing Induced Thermal Bowrotor Instability
,”
Tribol. Int.
,
121
, pp.
269
279
.10.1016/j.triboint.2018.01.066
14.
Tong
,
X.
, and
Palazzolo
,
A.
,
2017
, “
Measurement and Prediction of the Journal Circumferential Temperature Distribution for the Rotordynamic Morton Effect
,”
ASME. J. Tribol.
,
140
(
3
), p.
031702
.10.1115/1.4038104
15.
Leader
,
M. E.
,
Whalen
,
J. K.
, and
Grey
,
G. G.
,
1995
, “
The Design and Application of a Squeeze Film Damper Bearing to a Flexible Steam Turbine Rotor
,”
24th Turbomachinery Symposium
, College Station, TX, Sept. 25–28, pp.
49
58
.10.21423/R1R36D
16.
Edney
,
S. L.
, and
Nicholas
,
J. C.
,
1999
, “
Retrofitting a Large Steam Turbine With a Mechanically Centered Squeeze Film Damper
,”
27th Turbomachinery Symposium
, Houston, TX, Sept. 20–24, pp.
29
40
.10.21423/R1X660
17.
Kanki
,
H.
,
Kaneko
,
Y.
,
Kurosawa
,
M.
, and
Yamamoto
,
T.
,
1998
, “
Prevention of Low-Frequency Vibration of High-Capacity Steam Turbine Units by Squeeze-Film Damper
,”
ASME. J. Eng. Gas Turbines Power.
,
120
(
2
), pp.
391
396
.10.1115/1.2818135
18.
Ferraro
,
R.
,
Catanzaro
,
M.
,
Kim
,
J.
,
Massini
,
M.
, and
Betti
,
D.
,
2016
, “
Suppression of Subsynchronous Vibrations in a 11 MW Steam Turbine Using Integral Squeeze Film Damper Technology at the Exhaust Side Bearing
,”
ASME
Paper No. GT2016-57410
. 10.1115/GT2016-57410
19.
Ertas
,
B.
,
Cerny
,
V.
,
Kim
,
J.
, and
Polreich
,
V.
,
2015
, “
Stabilizing a 46 MW Multistage Utility Steam Turbine Using Integral Squeeze Film Bearing Support Dampers
,”
ASME. J. Eng. Gas Turbines Power
,
137
(
5
), p.
52506
.10.1115/1.4028715
20.
Barrett
,
L. E.
,
Gunter
,
E. J.
, and
Allaire
,
P. E.
,
1978
, “
Optimum Bearing and Support Damping for Unbalance Response and Stability of Rotating Machinery
,”
ASME. J. Eng. Power
,
100
(
1
), pp.
89
94
.10.1115/1.3446331
21.
Chu
,
F.
, and
Holmes
,
R.
,
2000
, “
The Damping Capacity of the Squeeze Film Damper in Suppressing Vibration of a Rotating Assembly
,”
Tribol. Int.
,
33
(
2
), pp.
81
97
.10.1016/S0301-679X(00)00030-X
22.
San Andres
,
L.
, and
Vance
,
J.
,
1987
, “
Experimental Measurement of the Dynamic Pressure Distribution in a Squeeze-Film Bearing Damper Executing Circular Centered Orbits
,”
ASLE Trans.
,
30
(
3
), pp.
373
383
.10.1080/05698198708981770
23.
Lund
,
J. W.
,
Myllerup
,
C. M.
, and
Hartmann
,
H.
,
2003
, “
Inertia Effects in Squeeze-Film Damper Bearings Generated by Circumferential Oil Supply Groove
,”
ASME. J. Vib. Acoust. October
,
125
(
4
), pp.
495
499
.10.1115/1.1606711
24.
Kim
,
K.
, and
Lee
,
C.
,
2005
, “
Dynamic Characteristics of Sealed Squeeze Film Damper With a Central Feeding Groove
,”
ASME. J. Tribol.
,
127
(
1
), pp.
103
111
.10.1115/1.1828075
25.
San Andrés
,
L.
,
2012
, “
Damping and Inertia Coefficients for Two Open Ends Squeeze Film Dampers With a Central Groove: Measurements and Predictions
,”
ASME. J. Eng. Gas Turbines Power
,
134
(
10
), p.
102506
.10.1115/1.4007058
26.
San Andrés
,
L.
, and
Seshagiri
,
S.
,
2013
, “
Damping and Inertia Coefficients for Two End Sealed Squeeze Film Dampers With a Central Groove: Measurements and Predictions
,”
ASME. J. Eng. Gas Turbines Power. November
,
135
(
11
), p.
112503
.10.1115/1.4025033
27.
San Andrés
,
L.
,
2014
, “Force Coefficients for a Large Clearance Open Ends Squeeze Film Damper With a Central Feed Groove: Experiments and Predictions,”
Tribol. Int
., 71, pp.
17
25
.10.1016/j.triboint.2013.10.021
28.
San Andrés
,
L.
, and
Jeung
,
S.
, (October 7,
2014
, “
Experimental Performance of an Open Ends, Centrally Grooved, Squeeze Film Damper Operating With Large Amplitude Orbital Motions
,”
ASME. J. Eng. Gas Turbines Power
,
137
(
3
), p.
032508
.10.1115/1.4028376
29.
Delgado
,
A.
, and
San Andrés
,
L.
,
2010
, “
A Model for Improved Prediction of Force Coefficients in Grooved Squeeze Film Dampers and Oil Seal Rings
,”
ASME. J. Tribol.
,
132
(
3
), p.
032202
.10.1115/1.4001459
30.
Andrés
,
L. S.
, and
Delgado
,
A.
,
2012
, “
A Novel Bulk-Flow Model for Improved Predictions of Force Coefficients in Grooved Oil Seals Operating Eccentrically
,”
ASME. J. Eng. Gas Turbines Power
,
134
(
5
), p.
052509
.10.1115/1.4004736
31.
Bonello
,
P.
,
Brennan
,
M. J.
, and
Holmes
,
R.
,
2004
, “
A Study of the Nonlinear Interaction Between an Eccentric Squeeze Film Damper and an Unbalanced Flexible Rotor
,”
ASME. J. Eng. Gas Turbines Power
,
126
(
4
), pp.
855
866
.10.1115/1.1787503
32.
He
,
F.
,
2013
, “
Forced Response With Stability of Flexible Rotor-Bearing Systems With Squeeze Film Dampers
,”
Ph.D. thesis
, University of Virginia, Charlottesville, VA.https://libra2.lib.virginia.edu/downloads/st74cq726?filename=Dissertation_FengHe_LatestVersion.pdf
33.
Cao
,
J.
,
Allaire
,
P.
, and
Dimond
,
T.
,
2015
, “
Coupled Lateral and Torsional Nonlinear Transient Rotor–Bearing System Analysis With Applications
,”
ASME. J. Dyn. Sys., Meas., Control
,
137
(
9
), p.
091011
.10.1115/1.4030612
34.
Kang
,
X.
,
2019
, “
Simulation and Test of the Auxiliary Bearings and Their Dampers in Magnetic Bearing Systems
,”
Ph.D. dissertation
, Texas A&M University, College Station, TX.http://hdl.handle.net/1969.1/184966
35.
Zeidan
,
F.
,
San Andres
,
L.
, and
Vance
,
J.
,
1996
, “
Design and Application of Squeeze Film Dampers in Rotating Machinery
,”
25th Turbomachinery Symposium
, College Station, TX, Sept. 17–19, pp.
169
188
.10.21423/R1694R
36.
Shin
,
D.
, and
Palazzolo
,
A. B.
,
2020
, “
Tilting Pad Journal Bearing Misalignment Effect on Thermally Induced Synchronous Instability (Morton Effect)
,”
ASME J. Tribol.
,
143
(
3
), p.
031802
. 10.1115/1.4048164
37.
Shin
,
D.
,
Yang
,
J.
,
Tong
,
X.
,
Suh
,
J.
, and
Palazzolo
,
A.
,
2020
, “
A Review of Journal Bearing Thermal Effects on Rotordynamic Response
,”
ASME J. Tribol.
,
143
(
3
), p.
031803
.10.1115/1.4048167
You do not currently have access to this content.