Abstract

This paper investigates the operating characteristics of an off-road diesel engine to enhance its power performance in plateau. First, the impacts of altitude on the power, fuel economy, and emissions characteristics were analyzed by a bench test. Second, the combustion and overall performance working at different altitudes were studied by three-dimensional numerical simulation, including the relationship between fuel injection parameters and engine performance. The results showed that altitude significantly affects the performance of the off-road diesel engine. As the altitude increased from 0 m to 2000 m, the engine power decreased as much as 4.3%, and the brake-specific fuel consumption (BSFC) increased as much as 6%. At the peak torque condition, the intake manifold boost pressure and the exhaust manifold pressure both reduced with a rise of altitude, while the intake and exhaust manifold temperatures both increased with a rise of altitude. Finally, after comparing the in-cylinder flow conditions and combustion characteristics given by six combustion chamber designs that have different shrinkage ratios, the engine performance at 4000 m altitude with five different fuel spray angles were further optimized. The engine rated power increased by 8.2% when the shrinkage ratio was 7.28% and the fuel spray angle was 150 deg at the 4000 m altitude.

References

1.
Jiao
,
Y. F.
,
Liu
,
R. L.
,
Zhang
,
Z. J.
,
Yang
,
C. H.
,
Zhou
,
G. M.
,
Dong
,
S. R.
, and
Liu
,
W. Q.
,
2019
, “
Comparison of Combustion and Emission Characteristics of a Diesel Engine Fueled With Diesel and methanol-Fischer-Tropsch Diesel-Biodiesel-Diesel Blends at Various Altitudes
,”
Fuel
,
243
, pp.
52
59
.10.1016/j.fuel.2019.01.107
2.
Chaffin
,
C.
, and
Ullman
,
T.
,
1994
, “
Effects of Increased Altitude on Heavy-Duty Diesel Engine Emissions
,”
SAE
Paper No. 940669.10.4271/940669
3.
Liu
,
R. L.
,
Zhang
,
Z. J. G.
,
Dong
,
S. R.
, and
Zhou
,
G. M.
,
2017
, “
High-Altitude Matching Characteristic of Regulated Two-Stage Turbocharger With Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
139
(
9
), p.
094501
.10.1115/1.4036283
4.
Chernich
,
D. J.
,
Jacobs
,
P. E.
, and
Kowalski
,
J. D.
,
1991
, “
A Comparison of Heavy-Duty Diesel Truck Engine Smoke Opacities at High Altitude and at Sea Level
,”
SAE
Paper No. 911671. 10.4271/911671
5.
Graboski
,
M. S.
, and
McCormick
,
R. L.
,
1996
, “
Effect of Diesel Fuel Chemistry on Regulated Emissions at High Altitude
,”
SAE
Paper No. 961947.10.4271/961947
6.
Shannak
,
B. A.
, and
Alhasan
,
M.
,
2002
, “
Effect of Atmospheric Altitude on Engine Performance
,”
Forschung Ingenieurwesen
,
67
(
4
), pp.
157
160
.10.1007/s10010-002-0087-y
7.
Wang
,
H.
,
Ge
,
Y.
,
Hao
,
L.
,
Xu
,
X.
,
Tan
,
J.
,
Li
,
J.
,
Wu
,
L.
,
Yang
,
J.
,
Yang
,
D.
,
Peng
,
J.
,
Yang
,
J.
, and
Yang
,
R.
,
2018
, “
The Real Driving Emission Characteristics of Light-Duty Diesel Vehicle at Various Altitudes
,”
Atmos. Environ.
,
191
, pp.
126
131
.10.1016/j.atmosenv.2018.07.060
8.
Agudelo
,
J.
,
Agudelo
,
A.
, and
Pérez
,
J.
,
2009
, “
Energy and Exergy Analysis of a Light Duty Diesel Engine Operating at Different Altitudes
,”
Rev. Facultad Ingeniería
,
48
, pp.
45
54
.https://www.researchgate.net/publication/237697297_Energy_and_Exergy_analysis_of_a_light_duty_diesel_engine_operating_at_different_altitudes
9.
Serrano
,
J. R.
,
Piqueras
,
P.
,
Sanchis
,
E. J.
, and
Diesel
,
B.
,
2019
, “
A Modelling Tool for Engine and Exhaust Aftertreatment Performance Analysis in Altitude Operation
,”
Results Eng.
,
4
, p.
100054
.10.1016/j.rineng.2019.100054
10.
Benjumea
,
P.
,
Agudelo
,
J.
, and
Agudelo
,
A.
,
2009
, “
Effect of Altitude and Palm Oil Biodiesel Fuelling on the Performance and Combustion Characteristics of a HSDI Diesel Engine
,”
Fuel
,
88
(
4
), pp.
725
731
.10.1016/j.fuel.2008.10.011
11.
Perez
,
P.
, and
Boehman
,
A.
,
2010
, “
Performance of a Single-Cylinder Diesel Engine Using Oxygen-Enriched Intake Air at Simulated High-Altitude Conditions
,”
Aerosp. Sci. Technol.
,
14
(
2
), pp.
83
94
.10.1016/j.ast.2009.08.001
12.
Bermúdez
,
V.
,
Serrano
,
J. R.
,
Piqueras
,
P.
,
Gómez
,
J.
, and
Bender
,
S.
,
2017
, “
Analysis of the Role of Altitude on Diesel Engine Performance and Emissions Using an Atmosphere Simulator
,”
Int. J. Engine Res.
,
18
(
1–2
), pp.
105
117
.10.1177/1468087416679569
13.
Zhou
,
G. M.
,
Liu
,
R. L.
,
Dong
,
S. R.
,
Liu
,
G.
,
Zheng
,
Z.
, and
Hao
,
S. X.
,
2011
, “
Experimental Study on Plateau Matching Performance of Turbocharger and Vehicle Diesel Engine
,” IEEE 2010 International Conference on Digital Manufacturing and Automation (
ICDMA
), Changsha, China, Dec. 18–20, pp.
710
713
.10.1109/ICDMA.2010.305
14.
Shen
,
L. Z.
,
Shen
,
Y. G.
, and
Yan
,
W. S.
,
1995
, “
Dimensionless Analysis of Diesel Engine Properties at Different Atmospheric Pressures
,”
SAE
Paper No. 952064.10.4271/952064
15.
Bi
,
X. P.
,
Zhang
,
G. Y.
, and
Zheng
,
X. J.
,
1996
, “
Predicting Vehicle Turbocharged Diesel Engine Performance at Altitude
,”
SAE
Paper No. 961826.10.4271/961826
16.
Szedlmayer
,
M.
, and
Kweon
,
C.
,
2016
, “
Effect of Altitude Conditions on Combustion and Performance of a Multi-Cylinder Turbocharged Direct-Injection Diesel Engine
,”
SAE
Paper No. 2016-01-0742.10.4271/2016-01-0742
17.
Kan
,
Z. C.
,
Hu
,
Z. Y.
,
Lou
,
D. M.
,
Tan
,
P. Q.
,
Cao
,
Z. Y.
, and
Yang
,
Z. H.
,
2018
, “
Effects of Altitude on Combustion and Ignition Characteristics of Speed-Up Period During Cold Start in a Diesel Engine
,”
Energy
,
150
(
1
), pp.
164
175
.10.1016/j.energy.2017.12.103
18.
Li
,
H. L.
,
Shi
,
L.
, and
Deng
,
K. Y.
,
2016
, “
Development of Turbocharging System for Diesel Engines of Power Generation Application at Different Altitudes
,”
J. Energy Inst.
,
89
(
4
), pp.
755
765
.10.1016/j.joei.2015.04.001
19.
Human
,
D. M.
,
Ullman
,
T. L.
, and
Baines
,
T. M.
,
1990
, “
Simulation of High Altitude Effects on Heavy-Duty Diesel Emissions
,”
SAE
Paper No. 900883.10.4271/900883
20.
Broatch
,
A.
,
Bermúdez
,
V.
,
Serrano
,
J. R.
,
Tabet
,
R.
,
Gómez
,
J.
, and
Bender
,
S.
,
2019
, “
Analysis of Passenger Car Turbocharged Diesel Engines Performance When Tested at Altitude and of the Altitude Simulator Device Used
,”
ASME J. Eng. Gas Turbines Power
,
141
(
8
), p.
081017
.10.1115/1.4043395
21.
Yang
,
D. F.
,
Cao
,
L. A.
,
Liu
,
Y.
, and
Zhang
,
Z. L.
,
2019
, “
Experimental and Numerical Investigation on a Novel Gas Turbocharging System for Diesel Engine Power Recovery at High Altitude
,”
J. Mech. Sci. Technol.
,
33
(
10
), pp.
5061
5072
.10.1007/s12206-019-0945-2
22.
Yang
,
M. Y.
,
Gu
,
Y. C.
,
Deng
,
K. Y.
,
Yang
,
Z. H.
, and
Zhang
,
Y. J.
,
2018
, “
Analysis on Altitude Adaptability of Turbocharging Systems for a Heavy-Duty Diesel Engine
,”
Appl. Therm. Eng.
,
128
, pp.
1196
1207
.10.1016/j.applthermaleng.2017.09.065
23.
Shi
,
X.
,
Wang
,
T. T.
, and
Ma
,
C. C.
,
2014
, “
Simulations of the Diesel Engine Performance With a Two-Stage Sequential Turbocharging System at Different Altitudes
,”
Proc IMechE Part D: J Automobile Eng.
,
228
(
14
), pp.
1718
1726
.10.1177/0954407014535919
24.
Liu
,
R. L.
,
Yang
,
C. H.
,
Zhang
,
Z. J.
,
Jiao
,
Y. F.
, and
Zhou
,
G. M.
,
2019
, “
Experimental Study on Thermal Balance of Regulated Two-Stage Turbocharged Diesel Engine at Variable Altitudes
,”
J. Therm. Sci.
,
28
(
4
), pp.
682
694
.10.1007/s11630-019-1151-3
25.
Li
,
H. L.
,
Zhang
,
G. Z.
,
Zhang
,
H. Y.
,
Shi
,
L.
,
Yang
,
M. Y.
, and
Deng
,
K. Y.
,
2016
, “
Equivalent Matching Model of a Regulated Two-Stage Turbocharging System for the Plateau Adaptability
,”
Proc IMechE Part D: J Automobile Eng.
,
230
(
12
), pp.
1654
1669
.10.1177/0954407015619070
26.
Zhang
,
H. L.
,
Zhuge
,
W. L.
,
Zhang
,
Y. J.
, and
Hu
,
L. F.
,
2008
, “
Study of the Control Strategy of the Plateau Self-Adapted Turbocharging System for Diesel Engine
,”
SAE
Paper No. 2008-01-1636.10.4271/2008-01-1636
27.
Wang
,
J.
,
Shen
,
L. Z.
,
Bi
,
Y. H.
,
Liu
,
S. H.
, and
Wan
,
M. D.
,
2019
, “
Power Recovery of a Variable Nozzle Turbocharged Diesel Engine at High Altitude by Response Surface Methodology and Sequential Quadratic Programming
,”
Proc IMechE Part D: J Automobile Eng.
,
233
(
4
), pp.
810
823
.10.1177/0954407017753913
28.
Carlucci
,
A. P.
,
Ficarella
,
A.
,
Laforgia
,
D.
, and
Renna
,
A.
,
2015
, “
Supercharging System Behavior for High Altitude Operation of an Aircraft 2-Stroke Diesel Engine
,”
Energy Convers. Manage.
,
101
, pp.
470
480
.10.1016/j.enconman.2015.06.009
29.
Wang
,
C. G.
,
Lou
,
D. M.
,
Tan
,
P. Q.
,
Hu
,
Z. Y.
,
Liu
,
S.
, and
Yang
,
Z. H.
,
2018
, “
Experimental Study on Diesel Spray Characteristics at Different Altitudes
,”
SAE
Paper No. 2018-01-0308.10.4271/2018-01-0308
30.
Zama
,
Y.
,
Ochiai
,
W.
,
Furuhata
,
T.
, and
Arai
,
M.
,
2011
, “
Experimental Study on Spray Angle and Velocity Distribution of Diesel Spray Under High Ambient Pressure Conditions
,”
Atomization Sprays
,
21
(
12
), pp.
989
1007
.10.1615/AtomizSpr.2012004722
31.
Venkateswaran
,
S. P.
, and
Nagarajan
,
G.
,
2010
, “
Effects of the Re-Entrant Bowl Geometry on a DI Turbocharged Diesel Engine Performance and Emissions—A CFD Approach
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
122803
.10.1115/1.4001294
You do not currently have access to this content.