Abstract

This study investigates the effect of partial acoustic reflection at inlet or outlet of a combustor on thermoacoustic stability. Parametric maps of the thermoacoustic spectrum are utilized for this purpose, which represent frequencies and growth rates of eigenmodes for a wide range of model parameters. It is found that a decrease of the acoustic reflection at the boundaries does not always imply an increase in the stability margin of the thermoacoustic system. As a matter of fact, a reduction in the acoustic reflection may sometimes destabilize a thermoacoustic mode. Additionally, we show that perturbed passive thermoacoustic modes may become intrinsic thermoacoustic (ITA) modes in the fully anechoic case. We briefly discuss the mode definitions “acoustic” and “intrinsic” commonly found in the literature. The computational analysis is based on a state-space formulation of the linearized Navier–Stokes equations (LNSEs) with discontinuous Galerkin discretization. This approach allows to describe the thermoacoustic system as a linear combination of internal acoustics, flame dynamics, and acoustic boundaries. Such a segregation grants a clear analysis of the respective effects of the individual subsystems on the general stability of the system, expressed in terms of adjoint-based eigenvalue sensitivity. The state-space formulation of the LNSE proposed in this paper offers a powerful and flexible framework to carry out thermoacoustic studies of combustors with arbitrary geometry and acoustic boundary conditions.

References

1.
Lieuwen
,
T.
, and
Yang
,
V.
, eds.,
2005
, Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms and Modeling (Progress in Astronautics and Aeronautics, Vol. 210), American Institute of Aeronautics and Astronautics, Reston, VA.
2.
Hoeijmakers
,
M.
,
Kornilov
,
V.
,
Lopez Arteaga
,
I.
,
de Goey
,
P.
, and
Nijmeijer
,
H.
,
2014
, “
Intrinsic Instability of Flame Acoustic Coupling
,”
Combust. Flame
,
161
(
11
), pp.
2860
2867
.10.1016/j.combustflame.2014.05.009
3.
Emmert
,
T.
,
Bomberg
,
S.
, and
Polifke
,
W.
,
2015
, “
Intrinsic Thermoacoustic Instability of Premixed Flames
,”
Combust. Flame
,
162
(
1
), pp.
75
85
.10.1016/j.combustflame.2014.06.008
4.
Bomberg
,
S.
,
Emmert
,
T.
, and
Polifke
,
W.
,
2015
, “
Thermal Versus Acoustic Response of Velocity Sensitive Premixed Flames
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3185
3192
.10.1016/j.proci.2014.07.032
5.
Mukherjee
,
N.
, and
Shrira
,
V.
,
2017
, “
Intrinsic Flame Instabilities in Combustors: Analytic Description of a 1-D Resonator Model
,”
Combust. Flame
,
185
, pp.
188
209
.10.1016/j.combustflame.2017.07.012
6.
Albayrak
,
A.
,
Steinbacher
,
T.
,
Komarek
,
T.
, and
Polifke
,
W.
,
2018
, “
Convective Scaling of Intrinsic Thermo-Acoustic Eigen Frequencies of a Premixed Swirl Combustor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p.
041510
.10.1115/1.4038083
7.
Silva
,
C. F.
,
Yong
,
K. J.
, and
Magri
,
L.
,
2019
, “
Thermoacoustic Modes of Quasi-One-Dimensional Combustors in the Region of Marginal Stability
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021022
.10.1115/1.4041118
8.
Orchini
,
A.
,
Silva
,
C. F.
,
Mensah
,
G. A.
, and
Moeck
,
J. P.
,
2020
, “
Thermoacoustic Modes of Intrinsic and Acoustic Origin and Their Interplay With Exceptional Points
,”
Comb. Flame
, 211, pp. 83–95.10.1016/j.combustflame.2019.09.018
9.
Silva
,
C. F.
, and
Polifke
,
W.
,
2019
, “
Non-Dimensional Groups for Similarity Analysis of Thermoacoustic Instabilities
,”
Proc. Combust.Inst.
, 37(4), pp. 5289–5297.10.1016/j.proci.2018.06.144
10.
Mensah
,
G. A.
,
Magri
,
L.
,
Silva
,
C. F.
,
Buschmann
,
P. E.
, and
Moeck
,
J. P.
,
2018
, “
Exceptional Points in the Thermoacoustic Spectrum
,”
J. Sound Vib.
,
433
, pp.
124
128
.10.1016/j.jsv.2018.06.069
11.
Emmert
,
T.
,
Bomberg
,
S.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2017
, “
Acoustic and Intrinsic Thermoacoustic Modes of a Premixed Combustor
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3835
3842
.10.1016/j.proci.2016.08.002
12.
Durox
,
D.
,
Schuller
,
T.
,
Noiray
,
N.
, and
Candel
,
S.
,
2009
, “
Experimental Analysis of Nonlinear Flame Transfer Functions for Different Flame Geometries
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1391
1398
.10.1016/j.proci.2008.06.204
13.
Kim
,
K.
,
Lee
,
J.
,
Quay
,
B.
, and
Santavicca
,
D.
,
2010
, “
Response of Partially Premixed Flames to Acoustic Velocity and Equivalence Ratio Perturbations
,”
Combust. Flame
,
157
(
9
), pp.
1731
1744
.10.1016/j.combustflame.2010.04.006
14.
Schuermans
,
B.
,
Guethe
,
F.
, and
Mohr
,
W.
,
2010
, “
Optical Transfer Function Measurements for Technically Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
132
(
8
), p.
081501
.10.1115/1.3124663
15.
Tay-Wo-Chong
,
L.
,
Bomberg
,
S.
,
Ulhaq
,
A.
,
Komarek
,
T.
, and
Polifke
,
W.
,
2012
, “
Comparative Validation Study on Identification of Premixed Flame Transfer Function
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
021502
.10.1115/1.4004183
16.
Merk
,
M.
,
Gaudron
,
R.
,
Silva
,
C.
,
Gatti
,
M.
,
Mirat
,
C.
,
Schuller
,
T.
, and
Polifke
,
W.
,
2019
, “
Prediction of Combustion Noise of an Enclosed Flame by Simultaneous Identification of Noise Source and Flame Dynamics
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5263
5270
. 10.1016/j.proci.2018.05.124
17.
Dowling
,
A. P.
,
1995
, “
The Calculation of Thermoacoustic Oscillation
,”
J. Sound Vib.
,
180
(
4
), pp.
557
581
.10.1006/jsvi.1995.0100
18.
Sattelmayer
,
T.
, and
Polifke
,
W.
,
2003
, “
Assessment of Methods for the Computation of the Linear Stability of Combustors
,”
Combust. Sci. Tech.
,
175
(
3
), pp.
453
476
.10.1080/00102200302382
19.
Nicoud
,
F.
,
Benoit
,
L.
,
Sensiau
,
C.
, and
Poinsot
,
T.
,
2007
, “
Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames
,”
AIAA J.
,
45
(
2
), pp.
426
441
.10.2514/1.24933
20.
Kierkegaard
,
A.
,
Boij
,
S.
, and
Efraimsson
,
G.
,
2010
, “
A Frequency Domain Linearized Navier–Stokes Equations Approach to Acoustic Propagation in Flow Ducts With Sharp Edges
,”
J. Acoust. Soc. Am.
,
127
(
2
), pp.
710
719
.10.1121/1.3273899
21.
Gikadi
,
J.
,
Sattelmayer
,
T.
, and
Peschiulli
,
A.
,
2012
, “
Effects of the Mean Flow Field on the Thermo-Acoustic Stability of Aero-Engine Combustion Chambers
,”
ASME
Paper No. GT2012-69612.10.1115/GT2012-69612
22.
Schulze
,
M.
,
Hummel
,
T.
,
Klarmann
,
N.
,
Berger
,
F. M.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2016
, “
Linearized Euler Equations for the Prediction of Linear High-Frequency Stability in Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
, 139(3), p.
031510
.10.1115/1.4034453
23.
Meindl
,
M.
,
Albayrak
,
A.
, and
Polifke
,
W.
,
2019
, “
A State-Space Formulation of a Discontinuous Galerkin Method for Thermoacoustic Stability Analysis
,”
J. Sound Vib.
(under review).
24.
Silva
,
C. F.
,
Nicoud
,
F.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2013
, “
Combining a Helmholtz Solver With the Flame Describing Function to Assess Combustion Instability in a Premixed Swirled Combustor
,”
Combust. Flame
,
160
(
9
), pp.
1743
1754
.10.1016/j.combustflame.2013.03.020
25.
Güttel
,
S.
, and
Tisseur
,
F.
,
2017
, “
The Nonlinear Eigenvalue Problem
,”
Acta Numer.
,
26
, pp.
1
94
.10.1017/S0962492917000034
26.
Buschmann
,
P. E.
,
Mensah
,
G. A.
,
Nicoud
,
F.
, and
Moeck
,
J. P.
,
2019
, “
Solution of Thermoacoustic Eigenvalue Problems With a Non-Iterative Method
,”
ASME
Paper No. GT2019-90834.10.1115/GT2019-90834
27.
Schuermans
,
B.
,
2003
, “
Modeling and Control of Thermoacoustic Instabilities
,” Ph.D. thesis,
École Polytechnique Fédérale de Lausanne
, Lausanne, Switzerland.
28.
Emmert
,
T.
,
Meindl
,
M.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2016
, “
Linear State Space Interconnect Modeling of Acoustic Systems
,”
Acta Acust. United Acust.
,
102
(
5
), pp.
824
833
.10.3813/AAA.918997
29.
Hesthaven
,
J. S.
, and
Warburton
,
T.
,
2008
,
Nodal Discontinuous Galerkin Methods
(Texts in Applied Mathematics, Vol.
54
),
Springer
,
New York
.
30.
Cockburn
,
B.
, ed.,
2000
, “
Discontinuous Galerkin Methods: Theory, Computation and Applications
,”
First International Symposium on Discontinuous Galerkin Methods
, Vol.
11
,
Springer
,
Berlin, Newport, RI
,
May 2–26
, Paper No. OCLC: 247733322.
31.
McManus
,
K. R.
,
Poinsot
,
T.
, and
Candel
,
S. M.
,
1993
, “
A Review of Active Control of Combustion Instabilities
,”
Prog. Energy Combust. Sci.
,
19
(
1
), pp.
1
29
.10.1016/0360-1285(93)90020-F
32.
Magri
,
L.
, and
Juniper
,
M. P.
,
2013
, “
Sensitivity Analysis of a Time-Delayed Thermo-Acoustic System Via an Adjoint-Based Approach
,”
J. Fluid Mech.
,
719
, pp.
183
202
.10.1017/jfm.2012.639
33.
Magri
,
L.
, and
Juniper
,
M. P.
,
2014
, “
Adjoint-Based Linear Analysis in Reduced-Order Thermo-Acoustic Models
,”
Int. J. Spray Combust. Dyn.
,
6
(
3
), pp.
225
246
.10.1260/1756-8277.6.3.225
34.
Komarek
,
T.
, and
Polifke
,
W.
,
2010
, “
Impact of Swirl Fluctuations on the Flame Response of a Perfectly Premixed Swirl Burner
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
061503
.10.1115/1.4000127
35.
Meindl
,
M.
,
Merk
,
M.
,
Fritz
,
F.
, and
Polifke
,
W.
,
2019
, “
Determination of Acoustic Scattering Matrices From Linearized Compressible Flow Equations with Application to Thermoacoustic Stability Analysis
,”
J. Theor. Comput. Acoust.
,
27
(3), p.
1850027
10.1142/S2591728518500275
You do not currently have access to this content.