This paper proposes three different methods to estimate the low-pressure cooled exhaust gas recirculation (LP-EGR) mass flow rate based on in-cylinder pressure measurements. The proposed LP-EGR models are designed with various combustion parameters (CP), which are derived from (1) heat release analysis, (2) central moment calculation, and (3) principal component analysis (PCA). The heat release provides valuable insights into the combustion process, such as flame speed and energy release. The central moment calculation enables quantitative representations of the shape characteristics in the cylinder pressure. The PCA also allows the extraction of the influential features through simple mathematical calculations. In this paper, these approaches focus on extracting the CP that are highly correlated to the diluent effects of the LP-EGR, and the parameters are used as the input states of the polynomial regression models. Moreover, in order to resolve the effects of cycle-to-cycle variations on the estimation results, a static model-based Kalman filter is applied to the CP for the practically usable estimation. The fast and precise performance of the proposed models was validated in real-time engine experiments under steady and transient conditions. The proposed LP-EGR mass flow model was demonstrated under a wide range of steady-states with an R2 value over 0.98. The instantaneous response of the cycle-basis LP-EGR estimation was validated under transient operations.

References

1.
Demuynck
,
J.
,
Bosteels
,
D.
,
De Paepe
,
M.
,
Favre
,
C.
,
May
,
J.
, and
Verhelst
,
S.
,
2012
, “
Recommendations for the New WLTP Cycle Based on an Analysis of Vehicle Emission Measurements on NEDC and CADC
,”
Energy Policy
,
49
(
Suppl. C
), pp.
234
242
.
2.
Thomas
,
D.
,
Li
,
H.
,
Wang
,
X.
,
Song
,
B.
,
Ge
,
Y.
,
Yu
,
W.
, and
Ropkins
,
K.
,
2017
, “
A Comparison of Tailpipe Gaseous Emissions for RDE and WLTC Using SI Passenger Cars
,”
SAE
Paper No. 2017-01-2391
.
3.
Wirth
,
M.
,
Mayerhofer
,
U.
,
Piock
,
W. F.
, and
Fraidl
,
G. K.
,
2000
, “
Turbocharging the DI Gasoline Engine
,”
SAE
Paper No. 2000-01-0251
.
4.
Kumano
,
K.
, and
Yamaoka
,
S.
,
2014
, “
Analysis of Knocking Suppression Effect of Cooled EGR in Turbo-Charged Gasoline Engine
,”
SAE
Paper No. 2014-01-1217
.
5.
Fischer
,
M.
,
Kreutziger
,
P.
,
Sun
,
Y.
, and
Kotrba
,
A.
,
2017
, “
Clean EGR for Gasoline Engines—Innovative Approach to Efficiency Improvement and Emissions Reduction Simultaneously
,”
SAE
Paper No. 2017-01-0683
.
6.
Nagaosa
,
K.
,
Miyagi
,
N.
,
Yamazaki
,
T.
, and
Iwase
,
M.
,
2015
, “
Combustion Process Estimation in Cylinders Based on an Integrated Engine Model of the Wiebe Function and a Piston-Crank Mechanism
,”
54th Annual Conference of the Society of Instrument and Control Engineers of Japan
(
SICE
), Hangzhou, China, July 28–30, pp.
1397
1402
.
7.
Duchaussoy
,
Y.
,
Lefebvre
,
A.
, and
Bonetto
,
R.
,
2003
, “
Dilution Interest on Turbocharged SI Engine Combustion
,”
SAE
Paper No. 2003-01-0629
.
8.
Kaul
,
B. C.
,
Finney
,
C. E. A.
,
Wagner
,
R. M.
, and
Edwards
,
M. L.
,
2014
, “
Effects of External EGR Loop on Cycle-to-Cycle Dynamics of Dilute SI Combustion
,”
SAE Int. J. Engines
,
7
(
2
), pp.
606
614
.
9.
Teodosio
,
L.
,
De Bellis
,
V.
, and
Bozza
,
F.
,
2015
, “
Fuel Economy Improvement and Knock Tendency Reduction of a Downsized Turbocharged Engine at Full Load Operations Through a Low-Pressure EGR System
,”
SAE Int. J. Engines
,
8
(
4
), pp.
1508
1519
.
10.
Wei
,
H.
,
Zhu
,
T.
,
Shu
,
G.
,
Tan
,
L.
, and
Wang
,
Y.
,
2012
, “
Gasoline Engine Exhaust Gas Recirculation—A Review
,”
Appl. Energy
,
99
, pp.
534
544
.
11.
Liu
,
F.
,
Pfeiffer
,
J. M.
,
Caudle
,
R.
,
Marshall
,
P.
, and
Olin
,
P.
,
2016
, “
Low Pressure Cooled EGR Transient Estimation and Measurement for an Turbocharged SI Engine
,”
SAE
Paper No. 2016-01-0618
.
12.
Grandin
,
B.
, and
Ångström
,
H.-E.
,
1999
, “
Replacing Fuel Enrichment in a Turbo Charged SI Engine: Lean Burn or Cooled EGR
,”
SAE
Paper No. 1999-01-3505
.
13.
Lumsden
,
G.
,
Eddleston
,
D.
, and
Sykes
,
R.
,
1997
, “
Comparing Lean Burn and EGR
,”
SAE
Paper No. 970505
.
14.
Chao
,
Y.
,
Lu
,
H.
,
Hu
,
Z.
,
Deng
,
J.
,
Wu
,
Z.
,
Li
,
L.
,
Shen
,
Y.
, and
Yuan
,
S.
,
2017
, “
Comparison of Fuel Economy Improvement by High and Low Pressure EGR System on a Downsized Boosted Gasoline Engine
,”
SAE
Paper No. 2017-01-0682
.
15.
Kaiser
,
M.
,
Krueger
,
U.
,
Harris
,
R.
, and
Cruff
,
L.
,
2010
, “
‘Doing More With Less’”—The Fuel Economy Benefits of Cooled EGR on a Direct Injected Spark Ignited Boosted Engine
,”
SAE
Paper No. 2010-01-0589
.
16.
Fabio
,
B.
,
Vincenzo
,
D. B.
, and
Luigi
,
T.
,
2015
, “
EGR Systems Employment to Reduce the Fuel Consumption of a Downsized Turbocharged Engine at High-Load Operations
,”
69th Conference of the Italian Thermal Engineering Association
, Milan, Italy, Sept. 10–13, pp.
866
873
.https://www.researchgate.net/publication/286755971_EGR_Systems_Employment_to_Reduce_the_Fuel_Consumption_of_a_Downsized_Turbocharged_Engine_at_High-load_Operations
17.
Takaki
,
D.
,
Tsuchida
,
H.
,
Kobara
,
T.
,
Akagi
,
M.
,
Tsuyuki
,
T.
, and
Nagamine
,
M.
,
2014
, “
Study of an EGR System for Downsizing Turbocharged Gasoline Engine to Improve Fuel Economy
,”
SAE
Paper No. 2014-01-1199
.
18.
Potteau
,
S.
,
Lutz
,
P.
,
Leroux
,
S.
,
Moroz
,
S.
, and
Tomas
,
E.
,
2007
, “
Cooled EGR for a Turbo SI Engine to Reduce Knocking and Fuel Consumption
,”
SAE
Paper No. 2007-01-3978
.
19.
Alger
,
T.
,
Mangold
,
B.
,
Roberts
,
C.
, and
Gingrich
,
J.
,
2012
, “
The Interaction of Fuel Anti-Knock Index and Cooled EGR on Engine Performance and Efficiency
,”
SAE Int. J. Engines
,
5
(
3
), pp.
1229
1241
.
20.
Grandin
,
B.
,
Ångström
,
H.-E.
,
Stålhammar
,
P.
, and
Olofsson
,
E.
,
1998
, “
Knock Suppression in a Turbocharged SI Engine by Using Cooled EGR
,”
SAE
Paper No. 982476
.
21.
Kaul
,
B.
,
Wagner
,
R.
, and
Green
,
J.
,
2013
, “
Analysis of Cyclic Variability of Heat Release for High-EGR GDI Engine Operation With Observations on Implications for Effective Control
,”
SAE Int. J. Engines
,
6
(
1
), pp.
132
141
.
22.
Siokos
,
K.
,
Koli
,
R.
,
Prucka
,
R.
,
Schwanke
,
J.
, and
Miersch
,
J.
,
2015
, “
Assessment of Cooled Low Pressure EGR in a Turbocharged Direct Injection Gasoline Engine
,”
SAE Int. J. Engines
,
8
(
4
), pp.
1535
1543
.
23.
Alger
,
T.
, and
Mangold
,
B.
,
2009
, “
Dedicated EGR: A New Concept in High Efficiency Engines
,”
SAE Int. J. Engines
,
2
(
1
), pp.
620
631
.
24.
Han
,
D.
,
Park
,
J.
,
Lee
,
J.
,
Lee
,
H.
,
Kim
,
W.
,
Lim
,
J.
, and
Kim
,
D.
,
2016
, “
Fuel Efficiency Improvement of Turbocharged Gasoline Direct Injection Engine Using Low Pressure EGR
,”
FISITA World Automotive Congress
, Busan, Korea, Sept. 26–30, Paper No. F2016-ESYA-003.
25.
Alger
,
T.
,
Gukelberger
,
R.
,
Gingrich
,
J.
, and
Mangold
,
B.
,
2015
, “
The Impact of Cooled EGR on Peak Cylinder Pressure in a Turbocharged, Spark Ignited Engine
,”
SAE Int. J. Engines
,
8
(
2
), pp.
455
463
.
26.
Luján
,
J. M.
,
Climent
,
H.
,
Novella
,
R.
, and
Rivas-Perea
,
M. E.
,
2015
, “
Influence of a Low Pressure EGR Loop on a Gasoline Turbocharged Direct Injection Engine
,”
Appl. Therm. Eng.
,
89
, pp.
432
443
.
27.
Gukelberger
,
R.
,
Gingrich
,
J.
,
Alger
,
T.
,
Almaraz
,
S.
, and
Denton
,
B.
,
2015
, “
LPL EGR and D-EGR® Engine Concept Comparison—Part 1: Part Load Operation
,”
SAE Int. J. Engines
,
8
(
2
), pp.
570
582
.
28.
Gukelberger
,
R.
,
Gingrich
,
J.
,
Alger
,
T.
, and
Almaraz
,
S.
,
2015
, “
LPL EGR and D-EGR® Engine Concept Comparison Part 2: High Load Operation
,”
SAE Int. J. Engines
,
8
(
2
), pp.
547
556
.
29.
Abd-Alla
,
G. H.
,
2002
, “
Using Exhaust Gas Recirculation in Internal Combustion Engines: A Review
,”
Energy Convers. Manage.
,
43
(
8
), pp.
1027
1042
.
30.
Koli
,
R.
,
Siokos
,
K.
,
Prucka
,
R.
,
Jade
,
S.
, and
Schwanke
,
J.
,
2016
, “
A Control Algorithm for Low Pressure—EGR Systems Using a Smith Predictor With Intake Oxygen Sensor Feedback
,”
SAE
Paper No. 2016-01-0612
.
31.
Hegarty
,
K.
,
Dickinson
,
P.
,
Cieslar
,
D.
, and
Collings
,
N.
,
2013
, “
Fast O2 Measurement Using Modified UEGO Sensors in the Intake and Exhaust of a Diesel Engine
,”
SAE
Paper No. 2013-01-1051
.
32.
Welling
,
O.
, and
Collings
,
N.
,
2011
, “
UEGO Based Measurement of EGR Rate and Residual Gas Fraction
,”
SAE
Paper No. 2011-01-1289
.
33.
Liu
,
F.
, and
Pfeiffer
,
J.
,
2015
, “
Estimation Algorithms for Low Pressure Cooled EGR in Spark-Ignition Engines
,”
SAE Int. J. Engines
,
8
(
4
), pp.
1652
1659
.
34.
Fons
,
M.
,
Muller
,
M.
,
Chevalier
,
A.
,
Vigild
,
C.
,
Hendricks
,
E.
, and
Sorenson
,
S. C.
,
1999
, “
Mean Value Engine Modelling of an SI Engine With EGR
,”
SAE
Paper No. 1999-01-0909
.
35.
Kiwan
,
R.
,
Stefanopoulou
,
A. G.
,
Martz
,
J.
,
Surnilla
,
G.
,
Ali
,
I.
, and
Joseph Styles
,
D.
,
2016
, “
Effects of Differential Pressure Measurement Characteristics on Low Pressure-EGR Estimation Error in Si-Engines
,”
Eighth IFAC Symposium on Advances in Automotive Control
, Norrköping, Sweden, June 20–23, pp.
722
729
.
36.
Sellnau
,
M. C.
,
Matekunas
,
F. A.
,
Battiston
,
P. A.
,
Chang
,
C.-F.
, and
Lancaster
,
D. R.
,
2000
, “
Cylinder-Pressure-Based Engine Control Using Pressure-Ratio-Management and Low-Cost Non-Intrusive Cylinder Pressure Sensors
,”
SAE
Paper No. 2000-01-0932
.
37.
Arsie
,
I. D.
,
Leo
,
R.
,
Falco
,
S.
,
Pianese
,
C. D.
, and
Cesare
,
M.
,
2015
, “
Estimation of the Engine Thermal State by In-Cylinder Pressure Measurement in Automotive Diesel Engines
,”
SAE
Paper No. 2015-01-1623
.
38.
Arsie
,
I.
,
Leo
,
R. D.
,
Pianese
,
C.
, and
De Cesare
,
M.
,
2014
, “
Estimation of In-Cylinder Mass and AFR by Cylinder Pressure Measurement in Automotive Diesel Engines
,”
19th World Congress
, Cape Town, South Africa, Aug. 24–29, pp.
11836
11841
.https://pdfs.semanticscholar.org/e8e3/aecf27eca7363b6d35912286897fe0fb9c5e.pdf
39.
Klein
,
P.
,
Grüter
,
R.
, and
Loffeld
,
O.
,
2007
, “
Real-Time Estimation of the Exhaust Gas Recirculation Ratio Based on Cylinder Pressure Signals
,”
SAE
Paper No. 2007-01-0493
.
40.
Iorio
,
B.
,
Giglio
,
V.
,
Police
,
G.
, and
Rispoli
,
N.
,
2003
, “
Methods of Pressure Cycle Processing for Engine Control
,”
SAE
Paper No. 2003-01-0352
.
41.
Okunishi
,
S.
, and
Ogawa
,
K.
,
2016
, “
New Method to Estimate the Flow Rate of LPL-EGR Using Cylinder Pressure Sensor
,”
SAE
Paper No. 2016-32-0084
.
42.
Di Leo
,
R.
,
2015
, “
Methodologies for Air-Fuel Ratio and Trapped Mass Estimation in Diesel Engines Using the In-Cylinder Pressure Measurement
,”
70th Conference of the ATI Engineering Association
, Roma, Italy, Sept. 9–11, pp.
957
964
.
43.
Gilkey
,
J. C.
, and
Powell
,
J. D.
,
1985
, “
Fuel-Air Ratio Determination From Cylinder Pressure Time Histories
,”
ASME J. Dyn. Sys., Meas., Control
,
107
(
4
), pp.
252
257
.
44.
Gassenfeit
,
E. H.
, and
Powell
,
J. D.
,
1989
, “
Algorithms for Air-Fuel Ratio Estimation Using Internal Combustion Engine Cylinder Pressure
,”
SAE
Paper No. 890300
.
45.
Bottelli
,
S.
,
Waschl
,
H.
,
Savaresi
,
S.
,
del Re
,
L.
, and
Formentin
,
S.
,
2013
, “
Data Driven Estimation of Exhaust Manifold Pressure by Use of In-Cylinder Pressure Information
,”
SAE Int. J. Engines
,
6
(
1
), pp.
659
668
.
46.
Formentin
,
S.
,
Corno
,
M.
,
Alberer
,
D.
,
Benatzky
,
C.
,
Re
,
L. D.
, and
Savaresi
,
S. M.
,
2012
, “
NOx Virtual Sensor Design Via in-Cylinder Pressure Feature Extraction
,”
16th IFAC Symposium on System Identification, Brussels
, Belgium, July 11–13, pp.
739
744
.
47.
Lee
,
K.
,
Park
,
I.
,
Sunwoo
,
M.
, and
Lee
,
W.
,
2013
, “
Autosar-Ready Light Software Architecture for Automotive Embedded Control Systems
,”
Trans. Korean Soc. Autom. Eng.
,
21
(
1
), pp.
68
77
.
48.
Park
,
I.
,
Lee
,
W.
, and
Sunwoo
,
M.
,
2012
, “
Application Software Modeling and Integration Methodology Using Autosar-Ready Light Software Architecture
,”
Trans. Korean Soc. Autom. Eng.
,
20
(
6
), pp.
117
125
.
49.
Davis
,
P. W.
, and
Peckham
,
M. S.
,
2008
, “
Cycle-by-Cycle Gasoline Engine Cold Start Measurement of Residual Gas and AFR Using a Fast Response CO&CO2 Analyzer
,”
SAE
Paper No. 2008-01-1649
.
50.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
51.
Francqueville
,
L.
, and
Michel
,
J. B.
,
2014
, “
On the Effects of EGR on Spark-Ignited Gasoline Combustion at High Load
,”
SAE Int. J. Engines
,
7
(
4
), pp.
1808
1823
.
52.
Shayler
,
P. J.
,
Wiseman
,
M. W.
, and
Ma
,
T.
,
1990
, “
Improving the Determination of Mass Fraction Burnt
,”
SAE
Paper No. 900351
.
53.
Brunt
,
M. F. J.
,
Rai
,
H.
, and
Emtage
,
A. L.
,
1998
, “
The Calculation of Heat Release Energy From Engine Cylinder Pressure Data
,”
SAE
Paper No. 981052
.
54.
Shehata
,
M. S.
,
2010
, “
Cylinder Pressure, Performance Parameters, Heat Release, Specific Heats Ratio and Duration of Combustion for Spark Ignition Engine
,”
Energy
,
35
(
12
), pp.
4710
4725
.
55.
Mood
,
A. M. G. F. A.
, and
Boes
,
D. C.
,
1974
,
Introduction to the Theory of Statistics
,
McGraw-Hill
,
New York
.
56.
Ozdor
,
N.
,
Dulger
,
M.
, and
Sher
,
E.
,
1994
, “
Cyclic Variability in Spark Ignition Engines a Literature Survey
,”
SAE
Paper No. 940987
.
57.
Simon
,
D.
,
2006
,
Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches
,
Wiley
, Hoboken, NJ.
You do not currently have access to this content.