Injection flow dynamics plays a significant role in fuel spray; this process controls the fuel–air mixing, which in turn is critical for the combustion and emissions process in diesel engine. In the current study, an integrated spray, combustion, and emission numerical model is developed for diesel engine computations based on the general transport equation analysis (GTEA) code. The model is first applied to predict the effect of turbulence inside the nozzle, which is considered by the submodel of hybrid breakup model on diesel spray process. The results indicate that turbulence term enhances the rate of breakup, resulting in more new droplets and smaller droplet sizes, leading to high evaporation rate with more evaporated mass. The model is also applied to simulate combustion and soot formation process of diesel. The effects of ambient density, ambient temperature, oxygen concentration and reaction mechanism on ignition delay, flame lift-off length, and soot formation are analyzed and discussed. The results show that although higher ambient density and temperature reduce the ignition delay and cause the flame stabilization location to move upstream, this is not helpful for fuel–air mixing because it increases the soot level in the fuel jet. While higher oxygen concentration has negative effects on soot formation. In addition, the model is employed to simulate the combustion and emission characteristics of a low-temperature combustion engine. The overall agreement between the measurements and predictions of in-cylinder pressure, heat release, and emission characteristics are satisfactory.

References

1.
Westbrook
,
C. K.
,
Mizobuchi
,
Y.
,
Poinsot
,
T. J.
,
Smith
,
P. J.
, and
Warnatz
,
J.
,
2005
, “
Computational Combustion
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
125
157
.
2.
Kong
,
S. C.
,
Patel
,
A.
,
Yin
,
Q.
,
Lingbeil
,
A.
, and
Reitz
,
R. D.
,
2003
, “
Numerical Modeling of Diesel Engine Combustion and Emissions Under HCCI-Like Conditions With High EGR Levels
,”
SAE
Paper No. 2003-01-1087.
3.
Sazhina
,
E. M.
,
Sazhin
,
S. S.
,
Heikal
,
M. R.
, and
Marooney
,
C. J.
,
1999
, “
The Shell Autoignition Model: Applications to Gasoline and Diesel Fuels
,”
Fuel
,
78
(
4
), pp.
389
401
.
4.
Dhuchakallaya
,
I.
, and
Watkins
,
A. P.
,
2010
, “
Auto-Ignition of Diesel Spray Using the PDF-Eddy Break-Up Model
,”
Appl. Math. Model.
,
34
(
7
), pp.
1732
1745
.
5.
Dhuchakallaya
,
I.
, and
Watkins
,
A. P.
,
2010
, “
Application of Spray Combustion Simulation in DI Diesel Engine
,”
Appl. Energy
,
87
(
4
), pp.
1427
1432
.
6.
Bajaj
,
C.
,
Ameen
,
M.
, and
Abraham
,
J.
,
2013
, “
Evaluation of an Unsteady Flamelet Progress Variable Model for Autoignition and Flame Lift-Off in Diesel Jets
,”
Combust. Sci. Technol.
,
185
(
3
), pp.
454
472
.
7.
Jia
,
M.
, and
Xie
,
M. Z.
,
2006
, “
A Chemical Kinetics Model of Iso-Octane Oxidation for HCCI Engines
,”
Fuel
,
85
(
17–18
), pp.
2593
2604
.
8.
You
,
X.
,
Egolfopoulos
,
F. N.
, and
Wang
,
H.
,
2009
, “
Detailed and Simplified Kinetic Models of n-Dodecane Oxidation: The Role of Fuel Cracking in Aliphatic Hydrocarbon Combustion
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
403
410
.
9.
Chang
,
Y. C.
,
Jia
,
M.
,
Liu
,
Y. D.
,
Xie
,
M. Z.
, and
Yin
,
H. C.
,
2013
, “
Application of a Decoupling Methodology for Development of Skeletal Oxidation Mechanisms for Heavy n-Alkanes From n-Octane to n-Hexadecane
,”
Energy Fuels
,
27
(
6
), pp.
3467
3479
.
10.
Wang
,
H.
,
Ra
,
Y.
,
Jia
,
M.
, and
Reitz
,
R. D.
,
2014
, “
Development of a Reduced n-Dodecane-PAH Mechanism and Its Application for n-Dodecane Soot Predictions
,”
Fuel
,
136
(
10
), pp.
25
36
.
11.
Chen
,
W.
,
Shuai
,
S.
, and
Wang
,
J.
,
2009
, “
A Soot Formation Embedded Reduced Reaction Mechanism for Diesel Surrogate Fuel
,”
Fuel
,
88
(
10
), pp.
1927
1936
.
12.
Kong
,
S. C.
,
Sun
,
Y.
, and
Rietz
,
R. D.
,
2007
, “
Modeling Diesel Spray Flame Liftoff, Sooting Tendency, and NOx Emissions Using Detailed Chemistry With Phenomenological Soot Model
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
245
251
.
13.
Chang
,
Y. C.
,
Jia
,
M.
,
Li
,
Y. P.
,
Liu
,
Y. D.
,
Xie
,
M. Z.
,
Wang
,
H.
, and
Reitz
,
D. R.
,
2015
, “
Development of a Skeletal Mechanism for Diesel Surrogate Fuel by Using a Decoupling Methodology
,”
Combust. Flame
,
162
(
10
), pp.
3785
3802
.
14.
Chang
,
Y. C.
,
Jia
,
M.
,
Liu
,
Y. D.
,
Li
,
Y. P.
, and
Xie
,
M. Z.
,
2013
, “
Development of a New Skeletal Mechanism for n-Decane Oxidation Under Engine-Relevant Conditions Based on a Decoupling Methodology
,”
Combust. Flame
,
160
(
8
), pp.
1315
1332
.
15.
Lei
,
G. D.
,
2008
, “
The Application and Research of the Unstructured Grid FVM in the Turbulent Reaction Flow Simulation With Complex Geometries
,”
Ph.D. thesis
, Harbin Engineering University, Harbin, China.https://www.globethesis.com/?t=1100360272479302
16.
Ming
,
P. J.
,
2008
, “
Development of Numerical Modeling for Gas-Liquid Two-Phase Flows Based on Unstructured Grids and Parallel Computing
,” Ph.D. thesis, Harbin Engineering University, Harbin, China.
17.
Qi
,
W. L.
,
Zhang
,
W. P.
,
Ming
,
P. J.
,
Jia
,
M.
, and
Peng
,
Y.
,
2017
, “
Numerical Simulation of High-Pressure Fuel Spray by Using a New Hybrid Breakup Model
,”
Atomization Sprays
,
27
(
12
), pp.
999
1023
.
18.
Qi
,
W. L.
,
Ming
,
P. J.
,
Zhang
,
W. P.
,
Jia
,
M.
, and
Wang
,
W. H.
,
2018
, “
Effect of Hybrid Breakup Modeling on Flame Lift-Off Length and Soot Predictions
,”
Proc. Inst. Mech. Eng., Part A
, (epub).
19.
Qi
,
W. L.
,
Zhang
,
W. P.
, and
Ming
,
P. J.
,
2017
, “
Evaluation of Spray/Wall Interaction Models Under Conditions Related to Diesel Engines With a Hybrid Breakup Model
,”
29th ILASS-Americas
, Atlanta, GA, May 15–18.
20.
Huh
,
K. Y.
,
Lee
,
E.
, and
Koo
,
J. Y.
,
1998
, “
Diesel Spray Atomization Model Considering Nozzle Exit Turbulence Conditions
,”
Atomization Sprays
,
8
(
4
), pp.
453
469
.
21.
Reitz
,
R. D.
, and
Diwakar
,
R.
,
1986
, “
Effect of Drop Breakup on Fuel Sprays
,”
SAE
Paper No. 860469.
22.
O'Rourke
,
P. J.
, and
Amsden
,
A. A.
,
1987
, “
The TAB Method for Numerical Calculation of Spray Droplet Breakup
,”
SAE
Paper No. 872089.
23.
Patterson
,
M. A.
, and
Reitz
,
R. D.
,
1998
, “
Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission
,”
SAE
Paper No. 980131.
24.
Hiroyasu
,
H.
, and
Kadota
,
T.
,
1976
, “
Models for Combustion and Formation of Nitric Oxide and Soot in Diesel Injection Diesel Engines
,”
SAE
Paper No. 760129.
25.
Nagle
,
J.
, and
Strickland-Constable
,
R. F.
,
1962
, “
Oxidation of Carbon Between 1000-2000 °C
,”
Fifth Conference on Carbon
, University Park, PA, June 19–23, pp.
154
164
.
26.
Frenklach
,
M.
, and
Warnatz
,
J.
,
1987
, “
Detailed Modeling of PAH Profiles in a Sooting Low-Pressure Acetylene Flame
,”
Combust. Sci. Technol.
,
51
(
4–6
), pp.
265
283
.
27.
Yang
,
J.
,
Golovitchev
,
V. I.
,
Redon
,
P.
,
Javier
,
L.
, and
Sanchez
,
J.
,
2011
, “
Numerical Analysis of NOx Formation Trends in Biodiesel Combustion Using Dynamic ϕ-T Parametric Maps
,”
SAE
Paper No. 2011-01-1929.
28.
Liu
,
Y. F.
,
Ming
,
P. J.
,
Zhang
,
W. P.
,
Zhu
,
M. G.
, and
Ni
,
D. M.
,
2009
, “
An Efficient Lagrange Point Tracking Algorithm for Fixed Grids
,”
Chin. J. Comput. Phys.
,
27
(
4
), pp.
527
532
.
29.
Amsden
,
A. A.
,
1997
, “
KIVA-3V: A Block-Structured KIVA Program for Engines With Vertical or Canted Values
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-13313-MS.
30.
Liu
,
A. B.
,
Mather
,
D.
, and
Reitz
,
R. D.
,
1993
, “
Modeling the Effects of Drop Drag and Breakup on Fuel Sprays
,”
SAE
Paper No. 930072.
31.
Nordin
,
N.
,
2001
, “
Complex Chemistry Modeling of Diesel Spray Combustion
,” Ph.D. thesis, Chalmers University, Göteborg, Sweden.
32.
Zhang
,
Y. Z.
,
Jia
,
M.
,
Liu
,
H.
,
Xie
,
M. Z.
,
Wang
,
T. Y.
, and
Zhou
,
L.
,
2014
, “
Development of a New Spray/Wall Interaction Model for Diesel Spray Under PCCI-Engine Relevant Conditions
,”
Atomization Sprays
,
24
(
1
), pp.
41
80
.
33.
Han
,
Z. Y.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG kε Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.
34.
Kee
,
R. J.
,
Rupley
,
F. M.
,
Meeks
,
E.
, and
Miller
,
J. A.
,
1996
, “
CHEMKIN-III: A FORTRAN Chemical Kinetics Package for the Analysis of Gas Phase Chemical and Plasma Kinetics
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND96-8216.
35.
Chang
,
Y. C.
,
2016
, “
Investigation of Skeletal Chemical Mechanisms for Diesel and Biodiesel Surrogate Fuel Based on Decoupling Methodology
,” Ph.D. thesis, Dalian University of Technology, Dalian, China.
36.
Liu
,
Y. D.
,
2013
, “
Research on the Development of Skeletal Chemical Kinetic Models for Primary Reference Fuel and Gasoline Surrogate Fuel (TRF)
,” Ph.D. thesis, Dalian University of Technology, Dalian, China.
37.
Colket
,
M.
,
Edwards
,
T.
,
Williams
,
S.
,
Cernansky
,
N. P.
,
Miller
,
D. L.
,
Egolfopoulos
,
F.
,
Lindstedt
,
P.
,
Seshadri
,
K.
,
Dryer
,
F. L.
,
Law
,
C. K.
,
Friend
,
D.
,
Lenhert
,
D. B.
,
Pitsch
,
H.
,
Sarofim
,
A.
,
Smooke
,
M.
, and
Tsang
,
W.
,
2007
, “
Development of an Experimental Database and Kinetic Models for Surrogate Jet Fuels
,”
AIAA
Paper No. 2007-770.
38.
Naber
,
J. D.
, and
Siebers
,
D. L.
,
1996
, “
Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays
,”
SAE
Paper No. 960034.
39.
Siebers
,
D. L.
,
1998
, “
Liquid-Phase Fuel Penetration in Diesel Sprays
,”
SAE
Paper No. 980809.
40.
Siebers
,
D. L.
, and
Higgins
,
B. S.
,
2000
, “
Effects of Injector Conditions on the Flame Lift-Off Length of DI Diesel Sprays
,” Thermal Fluid Dynamics Processes in Diesel Engines, Valencia, Spain, Sept. 14–15.
41.
Higgins
,
B.
, and
Siebers
,
D. L.
,
2001
, “
Measurement of the Flame Lift-Off Location on DI Diesel Sprays Using OH Chemiluminescence
,”
SAE
Paper No. 2001-01-0918.
42.
Pickett
,
L. M.
, and
Siebers
,
D. L.
,
2004
, “
Soot in Diesel Fuel Jets: Effects of Ambient Temperature, Ambient Density, and Injection Pressure
,”
Combust. Flame
,
138
(
1–2
), pp.
114
135
.
43.
Pickett
,
L. M.
, and
Siebers
,
D. L.
,
2004
, “
Non-Sooting, Low Flame Temperature Mixing-Controlled DI Diesel Combustion
,”
SAE
Paper No. 2004-01-1399.
44.
Pickett
,
L. M.
,
Siebers
,
D. L.
, and
Idicheria
,
C. A.
,
2005
, “
Relationship Between Ignition Processes and the Lift-Off Length of Diesel Fuel Jets
,”
SAE
Paper No. 2005-01-3843.
45.
Liu
,
W.
,
Sivaramakrishnan
,
R.
,
Davis
,
M. J.
,
Som
,
S.
,
Longman
,
D. E.
, and
Lu
,
T. F.
,
2013
, “
Development of a Reduced Biodiesel Surrogate Model for Compression Ignition Engine Modeling
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
401
409
.
46.
Som
,
S.
, and
Suresh
,
K. A.
,
2010
, “
Effects of Primary Breakup Modeling on Spray and Combustion Characteristics of Compression Ignition Engines
,”
Combust. Flame
,
157
(
6
), pp.
1179
1193
.
47.
Hernandez
,
J. J.
,
Sanz-Argent
,
J.
,
Benajes
,
J.
, and
Molina
,
S.
,
2008
, “
Selection of a Diesel Fuel Surrogate for the Prediction of Auto-Ignition Under HCCI Engine Conditions
,”
Fuel
,
87
(
6
), pp.
655
665
.
48.
Luo
,
J.
,
Yao
,
M.
,
Liu
,
H.
, and
Yang
,
B.
,
2012
, “
Experimental and Numerical Study on Suitable Diesel Fuel Surrogates in Low Temperature Combustion Conditions
,”
Fuel
,
97
(
7
), pp.
621
629
.
49.
Jia
,
M.
,
Peng
,
Z. J.
, and
Xie
,
M. Z.
,
2009
, “
Numerical Investigation of Soot Reduction Potentials With Diesel Homogeneous Charge Compression Ignition Combustion by An Improved Phenomenological Soot Mode
,”
Proc. Inst. Mech. Eng., Part D
,
223
(
3
), pp.
395
412
.
50.
Lee
,
S. S.
,
2006
, “
Investigation of Two Low Emissions Strategies for Diesel Engines: Premixed Charge Compression Ignition (PCCI) and Stoichiometric Combustion
,” Ph.D. thesis, University of Wisconsin-Wadison, Wadison, WI.
You do not currently have access to this content.