Recent studies showed that a prompt detection of the stall inception, connected with a specific model to predict its associated aerodynamic force, could provide room for an extension of the left margin of the operating curve of high-pressure centrifugal compressors. In industrial machines working in the field, however, robust procedures to detect and identify the phenomenon are still missing, i.e., the operating curve is almost ever cut preliminarily by the manufacturer by a proper safety margin; moreover, no agreement is found in the literature about a well-defined threshold to define the onset of the stall. In particular, in some cases, the intensity of the arising subsynchronous frequency is compared to the revolution frequency, while in many other ones it is compared to the blade passage frequency. A large experience in experimental stall analyses collected by the authors revealed that in some cases unexpected spikes could make this direct comparison not reliable for a robust automatic detection. To this end, a new criterion was developed based on an integral analysis of the area subtended to the entire subsynchronous spectrum of the dynamic pressure signal of probes positioned just outside the impeller exit. A dimensionless parameter was then defined to account for the spectrum area increase in proximity to stall inception. This new parameter enabled the definition of a reference threshold to highlight the arising of stall conditions, whose validity and increased robustness was here verified based on a set of experimental analyses of different types of full-stage test cases of industrial centrifugal compressors at the test rig.

References

1.
Senoo
,
Y.
, and
Kinoshita
,
Y.
,
1978
, “
Limits in Rotating Stall and Stall in Vaneless Diffuser of Centrifugal Compressors
,”
ASME
Paper No. 78-GT-19
.
2.
Ferrara
,
G.
,
Ferrari
,
L.
, and
Baldassarre
,
L.
,
2004
, “
Rotating Stall in Centrifugal Compressor Vaneless Diffuser: Experimental Analysis of Geometrical Parameters Influence on Phenomenon Evolution
,”
J. Rotating Mach.
,
10
(
6
), pp.
433
442
.
3.
Kita
,
M.
,
Iwamoto
,
S.
,
Kiuchi
,
I.
, and
Kawashita
,
R.
,
2008
, “
Prediction of Subsynchronous Rotor Vibration Amplitude Caused by Rotating Stall
,”
37th Turbomachinery Symposium
, Houston, TX, Sept. 8–11, pp.
97
102
.https://pdfs.semanticscholar.org/4698/119b3d5d45b212870ed5b3f3e56b6b7d7288.pdf
4.
Evans
,
B. F.
, and
Smalley
,
A. J.
,
1984
, “
Subsynchronous Vibrations in a High Pressure Centrifugal Compressor: A Case History
,” Southwest Research Institute, San Antonio, TX, NASA Technical Report No.
19850005809
.https://ntrs.nasa.gov/search.jsp?R=19850005809
5.
Bently
,
R.
,
Goldman
,
P.
, and
Yuan
,
J.
,
2001
, “
Rotor Dynamics of Centrifugal Compressors in Rotating Stall
,” Bently Rotor Dynamics Research Corporation, Minden, NV.
6.
Frigne
,
P.
, and
Braembussche
,
R. V. D.
,
1982
, “
Comparative Study of Subsynchronous Rotating Flow Patterns in Centrifugal Compressors With Vaneless Diffusers
,” Rotor Dynamic Instability Problems in High-Performance Turbomachinery, NASA Publication 2250, pp.
365
382
.
7.
Senoo
,
Y.
,
Kinoshita
,
Y.
, and
Ishida
,
M.
,
1977
, “
Asymmetric Flow in Vaneless Diffusers of Centrifugal Blowers
,”
ASME J. Fluids Eng.
,
99
(
1
), pp.
104
113
.
8.
Sorokes
,
J. M.
, and
Marshall
,
D. F.
,
2000
, “
A Review of Aerodynamically Induced Forces Acting on Centrifugal Compressors, and Resulting Vibration Characteristics of Rotors
,”
29th Turbomachinery Symposium
, Houston, TX, Sept. 18–21, pp.
263
280
.http://oaktrust.library.tamu.edu/handle/1969.1/159770
9.
Bianchini
,
A.
,
Biliotti
,
D.
,
Ferrara
,
G.
,
Ferrari
,
L.
,
Belardini
,
E.
,
Giachi
,
M.
,
Tapinassi
,
L.
, and
Vannini
,
G.
,
2013
, “
A Systematic Approach to Estimate the Impact of the Aerodynamic Force Induced by Rotating Stall in a Vaneless Diffuser on the Rotordynamic Behavior of Centrifugal Compressors
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
112502
.
10.
Fulton
,
J. W.
,
1986
, “
Subsynchronous Vibration of Multistage Centrifugal Compressors Forced by Rotating Stall
,” NASA Lewis Research Center Rotordynamic Instability Problems in High-Performance Turbomachinery, National Aeronautics and Space Administration, Cleveland, OH, pp.
35
62
.
11.
Biliotti
,
D.
,
Bianchini
,
A.
,
Ferrara
,
G.
,
Ferrari
,
L.
,
Belardini
,
E.
,
Giachi
,
M.
,
Tapinassi
,
L.
, and
Vannini
,
G.
,
2015
, “
Analysis of the Rotordynamic Response of a Centrifugal Compressor Subject to Aerodynamic Loads Due to Rotating Stall
,”
ASME J. Turbomach.
,
137
(
2
), p.
021002
.
12.
Bently
,
R.
, and
Goldman
,
P.
,
2000
, “
Vibrational Diagnostics of Rotating Stall in Centrifugal Compressors
,”
ORBIT, First Quarter
,
21
, pp.
32
40
.
13.
Khisameev
,
I. G.
,
Guzel'baev
,
Y. Z.
, and
Khavkin
,
A. L.
,
2007
, “
Features of Performing Stall Tests and Adjusting Antistall Systems for Protecting Centrifugal Compressors With Electromagnetic Bearings
,”
Chem. Pet. Eng.
,
43
(
9–10
), pp.
537
542
.
14.
Smith
,
D. R.
, and
Wachel
,
J. C.
,
1983
, “
Nonsynchronous Forced Vibration in Centrifugal Compressors
,”
Turbomach. Int.
, pp.
21
24
.http://www.engdyn.com/images/uploads/25-nonsynchronous_forced_vibration_in_centrifugal_compressors_-_drs&jcw.pdf
15.
Munari
,
E.
,
D'Elia
,
G.
,
Morini
,
M.
,
Mucchi
,
E.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2017
, “
Experimental Investigation of Vibrational and Acoustic Phenomena for Detecting the Stall and Surge of a Multistage Compressor
,”
ASME
Paper No. GT2017-64894
.
16.
Holzinger
,
F.
,
Wartzek
,
F.
,
Schiffer
,
H. P.
,
Leichtfuss
,
S.
, and
Nestle
,
M.
,
2016
, “
Self-Excited Blade Vibration Experimentally Investigated in Transonic Compressors: Acoustic Resonance
,”
ASME J. Turbomach.
,
138
(
4
), p.
041001
.
17.
Möller
,
D.
,
Juengst
,
M.
,
Schiffer
,
H. P.
,
Giersch
,
T.
, and
Heinichen
,
F.
,
2017
, “
Influence of Rotor Tip Blockage on Near Stall Blade Vibrations in an Axial Compressor Rig
,”
ASME
Paper No. GT2017-63660
.
18.
Zhang
,
Y.
,
Zheng
,
S.
,
Ma
,
C.
,
Chen
,
C.
, and
Wang
,
C.
,
2018
, “
Surge Vibration-Induced Nonlinear Behavior Regulation of Power Amplifier for Magnetic Bearing in a 315 kW Centrifugal Compressor
,”
ASME J. Vib. Acoust.
,
140
(
2
), p.
021003
.
19.
Aretakis
,
N.
,
Mathioudakis
,
K.
,
Kefalakis
,
M.
, and
Papailiou
,
K.
,
2004
, “
Turbocharger Unstable Operation Diagnosis Using Vibroacoustic Measurements
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
840
847
.
20.
Kabral
,
R.
, and
Åbom
,
M.
,
2018
, “
Investigation of Turbocharger Compressor Surge Inception by Means of an Acoustic Two-Port Model
,”
J. Sound Vib.
,
412
, pp.
270
286
.
21.
Lawless
,
P. B.
, and
Fleeter
,
S.
,
1995
, “
Rotating Stall Acoustic Signature in a Low-Speed Centrifugal Compressor—Part 1: Vaneless Diffuser
,”
ASME J. Turbomach.
,
117
(
1
), pp.
87
96
.
22.
Lawless
,
P. B.
, and
Fleeter
,
S.
,
1993
, “
Rotating Stall Acoustic Signature in a Low Speed Centrifugal Compressor—Part 2: Vaned Diffuser
,”
ASME
Paper No. 93-GT-254.
23.
Oakes
,
W. C.
,
Lawless
,
P. B.
, and
Fleeter
,
S.
,
1998
, “
A Characterization of Rotating Stall Behaviors in High and Low Speed Centrifugal Compressors
,”
International Compressor Engineering Conference
, West Lafayette, IN, July 14–17, Paper No.
1335
.https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2334&context=icec
24.
Day
,
E.
,
Lawless
,
P. B.
, and
Fleeter
,
S.
,
2000
, “
Centrifugal Compressor Multi-Mode Rotating Stall Control
,”
International Compressor Engineering Conference
, West Lafayette, IN, July 25–28, Paper No.
1366
.https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2365&context=icec
25.
Ishimoto
,
L.
,
De Souza
,
J.
,
de Norman Et Audehove
,
F.
,
da Silva Marques
,
B.
,
Baldassarre
,
L.
, and
Puaut
,
C.
,
2012
, “
Early Detection of Rotating Stall Phenomenon in Centrifugal Compressors by Means of ASME PTC 10 Type 2 Test
,”
41st Turbomachinery Symposium
, Houston, TX, Sept. 24–27, pp.
1
8
.http://oaktrust.library.tamu.edu/handle/1969.1/162981
26.
Ullum
,
U.
,
Wright
,
J.
,
Dayi
,
O.
,
Dayi
,
O.
,
Ecder
,
A.
,
Soulaimani
,
A.
,
Pich
,
R.
, and
Kamath
,
H.
,
2006
, “
Prediction of Rotating Stall Within an Impeller of a Centrifugal Pump Based on Spectral Analysis of Pressure and Velocity Data
,”
J. Phys.: Conf. Ser.
,
52
, pp.
36
45
.
27.
Bianchini
,
A.
,
Biliotti
,
D.
,
Ferrara
,
G.
,
Ferrari
,
L.
,
Belardini
,
E.
,
Giachi
,
M.
, and
Tapinassi
,
L.
,
2014
, “
Some Guidelines for the Experimental Characterization of Vaneless Diffuser Rotating Stall in Stages of Industrial Centrifugal Compressors
,”
ASME
Paper No. GT2014-26401
.
28.
Ferrara
,
G.
,
Ferrari
,
L.
,
Mengoni
,
C. P.
,
De Lucia
,
M.
, and
Baldassarre
,
L.
,
2002
, “
Experimental Investigation and Characterization of the Rotating Stall in a High Pressure Centrifugal Compressor—Part I: Influence of Diffuser Geometry on Stall Inception
,”
ASME
Paper No. GT-2002-30389
.
29.
Ferrara
,
G.
,
Ferrari
,
L.
,
Mengoni
,
C. P.
,
De Lucia
,
M.
, and
Baldasarre
,
L.
,
2002
, “
Experimental Investigation and Characterization of the Rotating Stall in a High Pressure Centrifugal Compressor—Part II: Influence of Diffuser Geometry on Stage Performance
,”
ASME
Paper No. GT-2002-30390
.
30.
Cellai
,
A.
,
Ferrara
,
G.
,
Ferrari
,
L.
,
Mengoni
,
C. P.
, and
Baldassarre
,
L.
,
2003
, “
Experimental Investigation and Characterization of the Rotating Stall in a High Pressure Centrifugal Compressor—Part III: Influence of Diffuser Geometry on Stall Inception and Performance (2nd Impeller Tested)
,”
ASME
Paper No. GT2003-38390
.
31.
Cellai
,
A.
,
Ferrara
,
G.
,
Ferrari
,
L.
,
Mengoni
,
C. P.
, and
Baldassarre
,
L.
,
2003
, “
Experimental Investigation and Characterization of the Rotating Stall in a High Pressure Centrifugal Compressor—Part IV: Impeller Influence on Diffuser Stability
,”
ASME
Paper No. GT2003-38394
.
32.
Ferrara
,
G.
,
Ferrari
,
L.
, and
Baldassarre
,
L.
,
2006
, “
Experimental Investigation and Characterization of Vaneless Diffuser Rotating Stall—Part V: Influence of Diffuser Geometry on Stall Inception and Performance (3rd Impeller Tested)
,”
ASME
Paper No. GT2006-90693
.
33.
Carnevale
,
E. A.
,
Ferrara
,
G.
,
Ferrari
,
L.
, and
Baldassarre
,
L.
,
2006
, “
Experimental Investigation and Characterization of Vaneless Diffuser Rotating Stall—Part VI: Reduction of Three Impeller Results
,”
ASME
Paper No. GT2006-90694
.
34.
Guzel'baev
,
Y. Z.
,
Khavkin
,
A. L.
, and
Khisameev
,
I. G.
,
2006
, “
Methods of Rotating Stall and Surge Detection in Centrifugal Compressors
,”
Chem. Pet. Eng.
,
42
(
5–6
), pp.
320
329
.
35.
Wang
,
L.
,
Zhang
,
J.
, and
Zhang
,
W.
,
2015
, “
Identify the Rotating Stall in Centrifugal Compressors by Fractal Dimension in Reconstructed Phase Space
,”
Entropy
,
17
(
12
), pp.
7888
7899
.
36.
Huang
,
W.
,
Geng
,
S.
,
Zhu
,
J.
, and
Zhang
,
H.
,
2007
, “
Numerical Simulation of Rotating Stall in a Centrifugal Compressor With Vaned Diffuser
,”
J. Therm. Sci.
,
16
(
2
), pp.
115
120
.
37.
Bianchini
,
A.
,
Biliotti
,
D.
,
Rubino
,
D. T.
,
Ferrari
,
L.
, and
Ferrara
,
G.
,
2015
, “
Experimental Analysis of the Pressure Field Inside a Vaneless Diffuser From Rotating Stall Inception to Surge
,”
ASME J. Turbomach.
,
137
(
11
), p.
111007
.
38.
API,
2002
, “
Axial and Centrifugal Compressors and Expander-Compressors for Petroleum, Chemical and Gas Service Industry
,” 7th ed.,
American Petroleum Institute
, API Standard No.
617
.https://www.api.org/~/media/files/publications/whats%20new/617_e8%20pa.pdf
You do not currently have access to this content.