Following three decades of research in short duration facilities, Purdue University has developed an alternative turbine facility in view of the modern technology in computational fluid mechanics, structural analysis, manufacturing, heating, control, and electronics. The proposed turbine facility can operate continuously and also perform transients, suited for precise heat flux, efficiency, and optical measurement techniques to advance turbine aerothermo-structural engineering. The facility has two different test sections, linear and annular, to service both fundamental and applied research. The linear test section is completely transparent for optical imaging and spectroscopy, aimed at technology readiness levels (TRLs) of 1–2. The annular test section was designed with optical access to perform proof of concepts as well as validation of turbine component performance for relevant nondimensional parameters at TRLs of 3–4. The large mass flow rate (28 kg/s) combined with a minimum hub to tip ratio of 0.85 allows high spatial resolution. The Reynolds number (Re) extends from 60,000 to 3,000,000, based on the vane outlet flow properties with an axial chord of 0.06 m and a turning angle of 72 deg. The pressure ratio can be independently adjusted, enabling testing from low subsonic to Mach 3.2. This paper provides a detailed description of the sequential design methodology from zero-dimensional to three-dimensional (3D) unsteady analysis as well as of the measurement techniques available in this turbine facility.

References

1.
Chana
,
K.
,
Cardwell
,
D.
, and
Jones
,
T.
,
2013
, “
A Review of the Oxford Turbine Research Facility
,”
ASME
Paper No. GT2013-95687.
2.
Dunn
,
M.
, and
Mathison
,
R.
,
2013
, “
History of Short Duration Measurement Programs Related to Gas Turbine Heat Transfer, Aerodynamics, and Aeroperformance at Calspan and OSU
,”
ASME
Paper No. GT2013-94926.
3.
Paniagua
,
G.
,
Sieverding
,
C. H.
, and
Arts
,
T.
,
2013
, “
Review of the Von Karman Institute Compression Tube Facility for Turbine Research
,”
ASME
Paper No. GT2013-95984.
4.
Anthony
,
R. J.
, and
Clark
,
J. P.
,
2013
, “
A Review of the AFRL Turbine Research Facility
,”
ASME
Paper No. GT2013-94741.
5.
Tiedemann
,
M.
, and
Kost
,
F.
,
2001
, “
Some Aspects of Wake-Wake Interactions regarding Turbine Stator Clocking
,”
ASME J. Turbomach.
,
123
(
3
), pp.
526
533
.
6.
Göttlich
,
E.
,
Woisetschläger
,
J.
,
Pieringer
,
P.
,
Hampel
,
B.
, and
Heitmeir
,
F.
,
2005
, “
Investigation of Vortex Shedding and Wake-Wake Interaction in a Transonic Turbine Stage Using Laser-Doppler-Velocimetry and Particle-Image-Velocimetry
,”
ASME J. Turbomach.
,
128
(
1
), pp.
178
187
.
7.
Sell
,
M.
,
Schlienger
,
J.
,
Pfau
,
A.
,
Treiber
,
M.
, and
Abhari
,
R. S.
,
2001
, “
The 2-Stage Axial Turbine Test Facility Lisa
,”
ASME
Paper No. 2001-GT-0492.
8.
Keith
,
B. D.
,
Basu
,
D. K.
, and
Steven
,
C.
,
2000
, “
Aerodynamic Test Results of Controlled Pressure Ratio Engine (Cope) Dual Spool Air Turbine Rotating Rig
,”
ASME
Paper No. 2000-GT-0632.
9.
Ma
,
R.
,
Morris
,
S. C.
, and
Corke
,
T. C.
,
2006
, “
Design of a Transonic Research Turbine Facility
,”
AIAA
Paper No. 2006-1311.
10.
Barringer
,
M.
,
Coward
,
A.
,
Clark
,
K.
, and
Thole
,
K.
,
2014
, “
The Design of a Steady Aero Thermal Research Turbine (START) for Studying Secondary Flow Leakages and Airfoil Heat Transfer
,”
ASME
Paper No. GT2014-25570.
11.
Meyer
,
S. E.
,
Heister
,
S. D.
,
Slabaugh
,
C.
,
Lucht
,
R. P.
,
Pratt
,
A.
,
Gejji
,
R. M.
,
Bedard
,
M.
, and
Lemcherfi
,
A.
,
2017
, “
Design and Development of the High Pressure Combustion Laboratory at Purdue University
,”
AIAA
Paper No. 2017-4965.
12.
Casella
,
F.
,
Otter
,
M.
,
Proelss
,
K.
,
Richter
,
C.
, and
Tummescheit
,
H.
,
2006
, “
The Modelica Fluid and Media Library for Modeling of Incompressible and Compressible Thermo-Fluid Pipe Networks
,”
International Modelica Conference
,
Vienna, Austria,
Sept. 4–5, pp.
631
640
.https://modelica.org/events/modelica2006/Proceedings/sessions/Session6b1.pdf
13.
Andreoli
,
V.
,
Lavagnoli
,
S.
,
Paniagua
,
G.
, and
Villace
,
V. F.
,
2016
, “
Robust Model of a Transient Wind Tunnel for Off-Design Aerothermal Testing of Turbomachinery
,”
Measurement
,
82
, pp.
323
333
.
14.
Morel
,
T.
,
1975
, “
Comprehensive Design of Axisymmetric Wind Tunnel Contractions
,”
ASME J. Fluids Eng.
,
97
(
2
), pp.
225
233
.
15.
Su
,
Y.-X.
,
1995
, “
Flow Analysis and Design of Three-Dimensional Wind Tunnel Contractions
,”
AIAA J.
,
29
(
11
), pp.
1912
1920
.
16.
Mikhail
,
M. N.
,
1979
, “
Optimum Design of Wind Tunnel Contractions
,”
AIAA J.
,
17
(
5
), pp.
471
477
.
17.
Loehrke
,
R. I.
, and
Nagib
,
H. M.
,
1972
, “
Experiments on Management of Free-Stream Turbulence
,” Illinois Institute of Technology Chicago, Chicago, IL, AGARD Report No.
598
.http://www.dtic.mil/docs/citations/AD0749891
18.
Pope
,
A.
, and
Goin
,
K.
,
1978
, High-Speed Wind Tunnel Testing,
Wiley, New York
.
19.
Paniagua
,
G.
,
Iorio
,
M.
,
Vinha
,
N.
, and
Sousa
,
J.
,
2014
, “
Design and Analysis of Pioneering High Supersonic Axial Turbines
,”
Int. J. Mech. Sci.
,
89
, pp.
65
77
.
20.
Vinha
,
N.
,
Paniagua
,
G.
,
Sousa
,
J.
, and
Saracoglu
,
B.
,
2016
, “
Axial Bladeless Turbine Suitable for High Supersonic Flows
,”
J. Propul. Power
,
32
(
4
), pp.
975
983
.
21.
Delhaye
,
D.
,
Paniagua
,
G.
,
Fernandez Oro
,
J.
, and
Dénos
,
R.
,
2011
, “
Enhanced Performance of Fast-Response 3-Hole Wedge Probes for Transonic Flows in Axial Turbomachinery
,”
Exp. Fluids
,
50
(
1
), pp.
163
177
.
22.
Yasa
,
T.
, and
Paniagua
,
G.
,
2012
, “
Robust Procedure for Multi-Hole Probe Data Processing
,”
Flow Meas. Instrum.
,
26
, pp.
46
54
.
23.
Villafane
,
L.
, and
Paniagua
,
G.
,
2013
, “
Aero-Thermal Analysis of Shielded Fine Wire Thermocouples
,”
Int. J. Therm. Sci.
,
65
, pp.
214
223
.
24.
Yasa
,
T.
,
Paniagua
,
G.
, and
Dénos
,
R.
,
2007
, “
Application of Hot-Wire Anemometry in a Blow-down Turbine Facility
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
420
427
.
25.
Roediger
,
T.
,
Knauss
,
H.
,
Gaisbauer
,
U.
,
Kraemer
,
E.
,
Jenkins
,
S.
, and
von Wolfersdorf
,
J.
,
2008
, “
Time-Resolved Heat Transfer Measurements on the Tip Wall of Ribbed Channel Using a Novel Heat Flux Sensor- Part I: Sensor and Benchmarks
,”
ASME J. Turbomach.
,
130
(
1
), p.
011018
.
26.
Pinilla
,
V.
,
Solano
,
J. P.
,
Paniagua
,
G.
, and
Anthony
,
R.
,
2012
, “
Adiabatic Wall Temperature Evaluation in a High Speed Turbine
,”
ASME J. Heat Transfer
,
134
(
9
), p.
091601
.
27.
Dénos
,
R.
, and
Sieverding
,
C. H.
,
2007
, “
Assessment of the Cold Wire Resistance Thermometer for High Speed Turbomachinery Applications
,”
ASME J. Turbomach.
,
119
(
1
), pp.
140
148
.
28.
Paniagua
,
G.
, and
Dénos
,
R.
,
2002
, “
Digital Compensation of Pressure Sensors in the Time Domain
,”
Exp. Fluids
,
32
(
4
), pp.
417
424
.
29.
Sousa
,
J.
,
Villafane
,
L.
, and
Paniagua
,
G.
,
2014
, “
Thermal Analysis and Modeling of Surface Heat Exchangers Operating in the Transonic Regime
,”
Energy
,
64
, pp.
961
969
.
30.
Schreivogel
,
P.
,
Paniagua
,
G.
, and
Bottini
,
H.
,
2012
, “
Pressure Sensitive Paint Techniques for Surface Pressure Measurements in Supersonic Flows
,”
Exp. Therm. Fluid Sci.
,
39
, pp.
189
197
.
31.
Villafane
,
L.
,
Paniagua
,
G.
,
Bonfanti
,
G.
, and
Yasa
,
T.
,
2015
, “
Local Surface Shear Stress Measurements From Oil Streaks Thinning Rate
,”
Sens. Actuators A: Phys.
,
223
, pp.
31
39
.
32.
Gord
,
J.
,
Gogineni
,
S. P.
,
Slipchenko
,
M.
,
Miller
,
J. D.
,
Meyer
,
T. R.
, and
Roy
,
S.
,
2015
, “
10 kHz—1 MHz Rate Stereo Particle Image Velocimetry Enabled by Burst-Mode Lasers
,”
11th International Symposium on Particle Image Velocimetry—PIV15
, Santa Barbara, CA, Sept. 14–16.
33.
Miller
,
J. D.
,
Jiang
,
N.
,
Slipchenko
,
M. N.
,
Mance
,
J. G.
,
Meyer
,
T. R.
,
Roy
,
S.
, and
Gord
,
J. R.
,
2016
, “
Spatiotemporal Analysis of Turbulent Jets Enabled by 100-kHz, 100-Ms Burst-Mode Particle Image Velocimetry
,”
Exp. Fluids
,
57
(
12
), p.
192
.
34.
Melling
,
A.
,
1997
, “
Tracer Particles and Seeding for Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
(
12
), pp.
1406
1416
.
35.
Beresh
,
S. J.
,
Wagner
,
J. L.
,
Henfling
,
J. F.
,
Spillers
,
R. W.
, and
Pruett
,
B. O. M.
,
2016
, “
Comparison of Pulse-Burst PIV Data to Simultaneous Conventional PIV Data
,”
AIAA
Paper No. 2016-0789.
36.
Demauro
,
E. P.
,
Wagner
,
J. L.
,
Beresh
,
S. J.
,
Farias
,
P.
, and
Pruett
,
B.
,
2016
, “
Measurements of Gas-Phase Velocity During Shock-Particle Interactions Using Pulse-Burst PIV
,”
AIAA
Paper No. 2016-0793.
37.
Jiang
,
N.
,
Webster
,
M.
,
Lempert
,
W. R.
,
Miller
,
J. D.
,
Meyer
,
T. R.
,
Ivey
,
C. B.
, and
Danehy
,
P. M.
,
2011
, “
MHz-Rate Nitric Oxide Planar Laser-Induced Fluorescence Imaging in a Mach 10 Hypersonic Wind Tunnel
,”
Appl. Opt.
,
50
(
4
), pp.
A20
A28
.
38.
Danehy
,
P.
,
O'Byrne
,
S.
,
Houwing
,
A. F. J.
, and
Smith
,
D.
,
2003
, “
Flow-Tagging Velocimetry for Hypersonic Flows Using Fluorescence of Nitric Oxide
,”
AIAA J.
,
41
(
2
), pp.
263
271
.
39.
Dam
,
N.
,
Klein-Douwel
,
R. J. H.
,
Sijtsema
,
N. M.
, and
ter Meulen
,
J. J.
,
2001
, “
Nitric Oxide Flow Tagging in Unseeded Air
,”
Opt. Lett.
,
26
(
1
), pp.
36
38
.
40.
Miles
,
R. B.
,
Lempert
,
W. R.
, and
Zhang
,
B.
,
1991
, “
Turbulent Structure Measurements by RELIEF Flow Tagging
,”
Fluid Dyn. Res.
,
8
(
1–4
), pp.
9
17
.
41.
Pitz
,
R. W.
,
Wehrmeyer
,
J. A.
,
Ribarov
,
L. A.
,
Oguss
,
D. A.
,
Batliwala
,
F.
,
DeBarber
,
P. A.
,
Deusch
,
S.
, and
Dimotakis
,
P. E.
,
2000
, “
Unseeded Molecular Flow Tagging in Cold and Hot Flows Using Ozone and Hydroxyl Tagging Velocimetry
,”
Meas. Sci. Technol.
,
11
(
9
), pp.
1259
1271
.
42.
Michael
,
J. B.
,
Edwards
,
M. R.
,
Dogariu
,
A.
, and
Miles
,
R. B.
,
2011
, “
Femtosecond Laser Electronic Excitation Tagging for Quantitative Velocity Imaging in Air
,”
Appl. Opt.
,
50
(
26
), pp.
5158
5162
.
43.
Clemens
,
N.
, and
Mungal
,
M.
,
1991
, “
A Planar Mie Scattering Technique for Visualizing Supersonic Mixing Flows
,”
Exp. Fluids
,
11
(
2–3
), pp.
175
185
.
44.
Dedic
,
C. E.
,
Miller
,
J. D.
, and
Meyer
,
T. R.
,
2014
, “
Dual-Pump Vibrational/Rotational Femtosecond/Picosecond Coherent Anti-Stokes Raman Scattering Temperature and Species Measurements
,”
Opt. Lett.
,
39
(
23
), pp.
6608
6611
.
45.
Bianchi
,
G.
,
Saracoglu
,
B. H.
,
Paniagua
,
G.
, and
Regert
,
T.
,
2015
, “
Experimental Analysis on the Effects of DC Arc Discharge at Various Flow Regimes
,”
Phys. Fluids, March
,
27
(
3
), p.
036102
.
46.
Miles
,
R. B.
,
Smits
,
A. J.
,
Huntley
,
M. B.
,
Wu
,
P.
, and
Tolboom
,
R.
,
2001
, “
Three-Dimensional Imaging of Hypersonic Flow at MHz-Rate
,”
AIAA
Paper No. 2001-846.
47.
Fond
,
B.
,
Abram
,
C.
,
Heyes
,
A. L.
,
Kempf
,
A. M.
, and
Beyrau
,
F.
,
2012
, “
Simultaneous Temperature, Mixture Fraction and Velocity Imaging in Turbulent Flows Using Thermographic Phosphor Tracer Particles
,”
Opt. Express
,
20
(
20
), pp.
22118
22133
.
You do not currently have access to this content.