Achieving an optimal design of journal bearings is a very challenging effort due to the many input and output variables involved, including rotordynamic and tribological responses. This paper demonstrates the use of a multivariate response modeling approach based on response surface design of experiments (RSDOE) to design tilting pad bearings. It is shown that an optimal configuration can be achieved in the early stages of the design process while substantially reducing the amount of calculations. To refine the multivariate response model, statistical significance of the factors was assessed by examining the test's p-value. The effect coefficient calculation complemented the statistical hypothesis testing as an overall quantitative measure of the strength of factors, namely; main effects, quadratic effects, and interactions between variables. This provided insight into the potential nonlinearity of the phenomena. Once arriving at an optimized design, a sensitivity analysis was performed to identify the input variables whose variabilities have the greatest influence on the mean of a given response. Finally, an analysis of percent contribution of each input variable standard deviation to the actual response standard deviation was performed.

References

1.
Urbiola-Soto
,
L.
,
Santibañez-Santoscoy
,
R.
,
López-Parra
,
M.
,
Ramirez-Reivich
,
A.
, and
Yañez-Valdes
,
R.
,
2016
, “
Rotordynamic Optimization of Fixed Pad Journal Bearings Using Surface Response Design of Experiments
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
122502
.
2.
Hashimoto
,
H.
, and
Matsumoto
,
K.
,
2000
, “
Improvement of Operating Characteristics of High-Speed Hydrodynamic Journal Bearings by Optimum Design—Part I: Formulation of Methodology and Its Application to Elliptical Bearing Design
,”
ASME J. Tribol.
,
123
(
2
), pp.
305
312
.
3.
Yang
,
B. S.
,
Lee
,
Y. H.
,
Choi
,
B. K.
, and
Kim
,
H. J.
,
2001
, “
Optimum Design of Short Journal Bearings by Artificial Life Algorithm
,”
J. Tribol. Int.
,
34
(
7
), pp.
427
435
.
4.
Saruhan
,
H.
,
Rouch
,
K. E.
, and
Roso
,
C. A.
,
2001
, “
Design Optimization of Fixed Pad Journal Bearing for Rotor System Using a Genetic Algorithm Approach
,”
International Symposium on Stability Control of Rotating Machinery (ISCORMA)
, Lake Tahoe, NV, Aug. 20–24, Paper No. 3001.
5.
Saruhan
,
H.
,
Rouch
,
K. E.
, and
Roso
,
C. A.
,
2004
, “
Design Optimization of Tilting-Pad Journal Bearing Using a Genetic Algorithm Approach
,”
Int. J. Rotating Mach.
,
10
(
4
), pp.
301
307
.
6.
Roso
,
C. A.
,
1997
, “
Optimization of Rotor-Bearing Systems for Industrial Turbomachinery Applications
,” Ph.D. thesis, University of Kentucky, Lexington, KY.
7.
Saruhan
,
H.
,
2006
, “
Optimum Design of Rotor-Bearing System Stability Performance Comparing an Evolutionary Algorithm versus a Conventional Method
,”
Int. J. Mech. Sci.
,
48
(
12
), pp.
1341
1351
.
8.
Angantyr
,
A.
, and
Aidanpää
,
J.-O.
,
2004
, “
Optimization of a Rotor Bearing System With Evolutionary Algorithm
,”
Tenth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC)
, Honolulu, HI, Mar. 7–11.
9.
Angantyr
,
A.
, and
Aidanpää
,
J.-O.
,
2005
, “
Constrained Optimization of Gas Turbine Tilting Pad Bearing Designs
,”
ASME J. Eng. Gas Turbines Power
,
128
(
4
), pp.
873
878
.
10.
Hirani
,
H.
, and
Suh
,
N. P.
,
2005
, “
Journal Bearing Design Using Multiobjective Genetic Algorithm and Axiomatic Design Approaches
,”
J. Tribol. Int.
,
38
(
5
), pp.
481
491
.
11.
Song
,
J.-D.
,
Yang
,
B.-S.
,
Choib
,
B.-G.
, and
Kim
,
H.-J.
,
2005
, “
Optimum Design of Short Journal Bearings by Enhanced Artificial Life Optimization Algorithm
,”
J. Tribol. Int.
,
38
(
4
), pp.
403
412
.
12.
Untaroiu
,
C. D.
, and
Untaroiu
,
A.
,
2010
, “
Constrained Design Optimization of Rotor-Tilting Pad Bearing Systems
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
122502
.
13.
Urbiola-Soto
,
L.
,
Aboites
,
F.
, and
De Santiago
,
O.
,
2003
, “
Análisis Rotodinámico Lateral de Compresores Centrífugos para Proceso, Reinyección y Transmisión de Gas—Parte I: Objetivos
,”
Memorias del 7 °Congreso y Expo Internacional de Ductos
, Puebla, México, pp.
1
11
.
14.
Urbiola-Soto
,
L.
,
Aboites
,
F.
,
De Santiago
,
O.
,
Bertín
,
G.
, and
García
,
R.
,
2003
, “
Análisis Rotodinámico Lateral de Compresores Centrífugos para Proceso, Reinyección y Transmisión de Gas—Parte II: Metodología
,”
Memorias del 7 °Congreso y Expo Internacional de Ductos
, Puebla, México, pp.
1
11
.
15.
XLRotorTM
,
2016
, “
Spreadsheets for Rotordynamic Analysis, Version 3.945
,” Rotating Machinery Analysis, Inc., Brevard, NC.
16.
API
,
2002
, “
Axial and Centrifugal Compressors and Expander-Compressors for Petroleum, Chemical, and Gas Industry Services
,” American Petroleum Institute, Washington, DC, Standard No. 617.
17.
Zeidan
,
F. Y.
, and
Herbage
,
B. S.
,
1991
, “
Fluid Film Bearing Fundamentals and Failure Analysis
,”
20th Turbomachinery Symposium
, College Station, TX, pp.
161
186
.https://pdfs.semanticscholar.org/676e/8d91559fc3a6275f2924b436767d957c73e3.pdf
18.
Nicholas
,
J. C.
,
1994
, “
Tilting Pad Bearing Design
,”
23rd Turbomachinery Symposium
, Dallas, TX, Sept. 13–15, pp.
179
194
.
19.
Nicholas
,
J. C.
, and
Kirk
,
R. G.
,
1979
, “
Selection and Design of Tilting Pad and Fixed Lobe Journal Bearings for Optimum Turborotor Dynamics
,”
Eighth Turbomachinery Symposium
, pp.
43
57
.https://oaktrust.library.tamu.edu/handle/1969.1/163764
20.
Montgomery
,
D. C.
,
2012
,
Design and Analysis of Experiments
, 8th ed.,
Wiley
,
New York
.
21.
Rao
,
C. R.
,
1947
, “
Factorial Experiments Derivable From Combinatorial Arrangements of Arrays
,”
J. R. Stat. Soc.
,
9
(
1
), pp.
128
139
.
22.
Minitab Inc.
,
2003
, “
Minitab 17, version 17.1.0
,” Minitab Inc., State College, PA.
23.
Derringer
,
G.
, and
Suich
,
R.
,
1980
, “
Simultaneous Optimization of Several Response Variables
,”
J. Qual. Technol.
,
12
(
4
), pp.
214
219
.http://asq.org/qic/display-item/?item=5341
24.
Chase
,
K. W.
, and
Parkinson
,
A. R.
,
1991
, “
A Survey of Research in the Application of Tolerance Analysis to the Design of Mechanical Assemblies
,”
Res. Eng. Des.
,
3
(
1
), pp.
23
37
.
You do not currently have access to this content.