This paper documents the setup and validation of nonlinear autoregressive network with exogenous inputs (NARX) models of a heavy-duty single-shaft gas turbine (GT). The data used for model training are time series datasets of several different maneuvers taken experimentally on a GT General Electric PG 9351FA during the start-up procedure and refer to cold, warm, and hot start-up. The trained NARX models are used to predict other experimental datasets, and comparisons are made among the outputs of the models and the corresponding measured data. Therefore, this paper addresses the challenge of setting up robust and reliable NARX models, by means of a sound selection of training datasets and a sensitivity analysis on the number of neurons. Moreover, a new performance function for the training process is defined to weigh more the most rapid transients. The final aim of this paper is the setup of a powerful, easy-to-build and very accurate simulation tool, which can be used for both control logic tuning and GT diagnostics, characterized by good generalization capability.

References

1.
Jelali
,
M.
, and
Kroll
,
A.
,
2004
,
Hydraulic Servo-Systems: Modeling, Identification, and Control
,
Springer-Verlag
, London.
2.
Lazzaretto
,
A.
, and
Toffolo
,
A.
,
2001
, “
Analytical and Neural Network Models for Gas Turbine Design and Off-Design Simulation
,”
Int. J. Appl. Thermodyn.
,
4
(
4
), pp.
173
182
.https://www.researchgate.net/publication/42539804_Analytical_and_Neural_Network_Models_for_Gas_Turbine_Design_and_Off-Design_Simulation
3.
Ogaji
,
S. O. T.
,
Singh
,
R.
, and
Probert
,
S. D.
,
2002
, “
Multiple-Sensor Fault-Diagnosis for a 2-Shaft Stationary Gas Turbine
,”
Appl. Energy
,
71
(
4
), pp.
321
339
.
4.
Arriagada
,
J.
,
Genrup
,
M.
,
Loberg
,
A.
, and
Assadi
,
M.
,
2003
, “
Fault Diagnosis System for an Industrial Gas Turbine by Means of Neural Networks
,”
International Gas Turbine Congress
, Tokyo, Japan, Nov. 2–7.
5.
Basso
,
M.
,
Giarre
,
L.
,
Groppi
,
S.
, and
Zappa
,
G.
,
2004
, “
NARX Models of an Industrial Power Plant Gas Turbine
,”
IEEE Trans. Control Syst. Technol.
,
13
(
4
), pp.
599
604
.
6.
Bettocchi
,
R.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Venturini
,
M.
, and
Burgio
,
M.
,
2004
, “Set Up of a Robust Neural Network for Gas Turbine Simulation,”
ASME
Paper No. GT2004-53421.
7.
Bettocchi
,
R.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2007
, “
Artificial Intelligence for the Diagnostics of Gas Turbines—Part II: Neuro-Fuzzy Approach
,”
ASME J. Eng. Gas Turbines Power
,
129
(
3
), pp.
720
729
.
8.
Spina
,
P. R.
, and
Venturini
,
M.
,
2007
, “
Gas Turbine Modeling by Using Neural Networks Trained on Field Operating Data
,”
20th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2007)
, Padova, Italy, June 25–28, pp.
213
222
.
9.
Simani
,
S.
, and
Patton
,
R. J.
,
2008
, “
Fault Diagnosis of an Industrial Gas Turbine Prototype Using a System Identification Approach
,”
Control Eng. Pract.
,
16
(
7
), pp.
769
786
.
10.
Yoru
,
Y.
,
Karakoc
,
T. H.
, and
Hepbasli
,
A.
, 2009, “
Application of Artificial Neural Network (ANN) Method to Exergetic Analyses of Gas Turbines
,”
International Symposium on Heat Transfer in Gas Turbine Systems
(
TURBINE-09
), Antalya, Turkey, Aug. 9–14.
11.
Fast
,
M.
,
Assadi
,
M.
, and
De
,
S.
,
2008
, “Condition Based Maintenance of Gas Turbines Using Simulation Data and Artificial Neural Network: A Demonstration of Feasibility,”
ASME
Paper No. GT2008-50768.
12.
Fast
,
M.
,
Palme
,
T.
, and
Karlsson
,
A.
,
2009
, “
Gas Turbines Sensor Validation Through Classification With Artificial Neural Networks
,” 22nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2009), Foz du Iguacu, Brazil, Aug. 30–Sept. 3, pp. 2059–2068.
13.
Fast
,
M.
, and
Palme
,
T.
,
2010
, “
Application of Artificial Neural Network to the Condition Monitoring and Diagnosis of a Combined Heat and Power Plant
,”
J. Energy
,
35
(
2
), pp.
1114
1120
.
14.
Fast
,
M.
,
2010
, “
Artificial Neural Networks for Gas Turbine Monitoring
,”
Ph.D. thesis
, Lund University, Lund, Sweden.https://pdfs.semanticscholar.org/b264/4dc3055d1205f6668a691e92ea025eef3a82.pdf
15.
Asgari
,
H.
,
Chen
,
X.
,
Morini
,
M.
,
Pinelli
,
M.
,
Sainudiin
,
R.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2016
, “
NARX Models for Simulation of the Start-Up Operation of a Single-Shaft Gas Turbine
,”
Appl. Therm. Eng.
,
93
, pp.
368
376
.
16.
Bahlawan
,
H.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2016
, “Set-Up of a Robust Narx Model Simulator of Gas Turbine Start-Up,” International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS), Potoroz, Slovenia, June 19–23, Paper No. 257.
17.
Nikpey
,
H.
,
Assadi
,
M.
, and
Breuhaus
,
P.
,
2013
, “
Development of an Optimized Artificial Neural Network Model for Combined Heat and Power Micro Gas Turbines
,”
Appl. Energy
,
108
, pp.
137
148
.
18.
Sisworahardjo
,
N.
, and
El-Sharkh
,
M. Y.
,
2013
, “Validation of Artificial Neural Network Based Model of Microturbine Power Plant,” IEEE Industry Applications Society Annual Meeting (
IAS
), Lake Buena Vista, FL, Oct. 6–11.
19.
Jingzhou
,
F.
,
Ningbo
,
Z.
,
Yong
,
S.
,
Yongming
,
F.
, and
Zhongwei
,
W.
,
2016
, “
Compressor Performance Prediction Using a Novel Feed-Forward Neural Network Based on Gaussian Kernel Function
,”
Adv. Mech. Eng.
,
8
(1), pp.
1
14
.
20.
Asgari
,
H.
,
Venturini
,
M.
,
Chen
,
X.
, and
Sainudiin
,
R.
,
2014
, “
Modeling and Simulation of the Transient Behavior of an Industrial Power Plant Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
136
(
6
), p.
061601
.
21.
Dominiczak
,
K.
,
Rzadkowski
,
R.
,
Radulski
,
W.
, and
Szczepanik
,
R.
,
2016
, “
On-Line Prediction of Temperature and Stress in Steam Turbine Components Using Neural Networks
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p.
052606
.
22.
Vatani
,
A.
,
Khorasani
,
K.
, and
Meskin
,
N.
,
2015
, “Health Monitoring and Degradation Prognostics in Gas Turbine Engines Using Dynamic Neural Networks,”
ASME
Paper No. GT2015-44101.
23.
Amozegar
,
M.
, and
Khorasani
,
K.
,
2016
, “
An Ensemble of Dynamic Neural Network Identifiers for Fault Detection and Isolation of Gas Turbine Engines
,”
Neural Networks
,
76
, pp.
106
121
.
24.
Chaibakhsh
,
A.
,
Amirkhani
,
S.
, and
Piredeir
,
P.
,
2015
, “Temperature Sensor Fault Diagnosing in Heavy Duty Gas Turbines Using Laguerre Network-Based Hierarchical Fuzzy Systems,”
International Symposium on Innovations in Intelligent Systems and Applications
, Madrid, Spain, Sept. 2–4, pp. 321–326.
25.
Lakshmi
,
K.
,
Sunny
,
H.
, and
Ramesh Babu
,
N.
,
2015
, “
Neural Network Based Estimation of Gas Turbine Engine
,”
Global J. Pure Appl. Math.
,
11
(
6
), pp.
4365
4374
.
26.
Sina Tayarani-Bathaie
,
S.
, and
Khorasani
,
K.
,
2015
, “
Fault Detection and Isolation of Gas Turbine Engines Using a Bank of Neural Networks
,”
J. Process Control
,
36
, pp.
22
41
.
27.
Tsoutsanis
,
E.
,
Meskin
,
N.
,
Benammar
,
M.
, and
Khorasani
,
K.
,
2016
, “
A Dynamic Prognosis Scheme for Flexible Operation of Gas Turbines
,”
Appl. Energy
,
164
, pp.
686
701
.
28.
Tavakolpour-Saleh
,
A. R.
,
Nasib
,
S. A. R.
,
Sepasyan
,
A.
, and
Hashemi
,
S. M.
,
2015
, “
Parametric and Nonparametric System Identification of an Experimental Turbojet Engine
,”
Aerosp. Sci. Technol.
,
43
, pp.
21
29
.
29.
Venturini
,
M.
,
2006
, “
Simulation of Compressor Transient Behavior Through Recurrent Neural Network Models
,”
ASME J. Turbomach.
,
128
(
3
), pp.
444
454
.
30.
Venturini
,
M.
,
2007
, “
Optimization of a Real-Time Simulator Based on Recurrent Neural Networks for Compressor Transient Behavior Prediction
,”
ASME J. Turbomach.
,
129
(
3
), pp.
468
478
.
31.
Venturini
,
M.
,
2005
, “
Development and Experimental Validation of a Compressor Dynamic Model
,”
ASME J. Turbomach.
,
127
(
3
), pp.
599
608
.
32.
Morini
,
M.
,
Pinelli
,
M.
, and
Venturini
,
M.
,
2007
, “
Development of a One-Dimensional Modular Dynamic Model for the Simulation of Surge in Compression Systems
,”
ASME J. Turbomach.
,
129
(
3
), pp.
437
447
.
33.
Morini
,
M.
,
Pinelli
,
M.
, and
Venturini
,
M.
,
2009
, “
Analysis of Biogas Compression System Dynamics
,”
Appl. Energy
,
86
(
11
), pp.
2466
2475
.
34.
Nowak
,
G.
, and
Rustin
,
A.
,
2016
, “
Using the Artificial Neural Network to Control the Steam Turbine Heating Process
,”
Appl. Therm. Eng.
,
108
, pp.
204
210
.
35.
Morini
,
M.
,
Cataldi
,
G.
,
Pinelli
,
M.
, and
Venturini
,
M.
,
2007
, “A Model for the Simulation of Large-Size Single-Shaft Gas Turbine Start-Up Based on Operating Data Fitting,”
ASME
Paper No. GT2007-27373.
36.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
1998
,
Gas Turbine Performance
,
Blackwell Science
, Oxford,
UK
.
37.
Beale, M. H., Hagan, M. T., and Demuth, H. B.,
2013
, “
Neural Network Tool box™ User's Guide
,” The MathWorks Inc., Natick, MA.
You do not currently have access to this content.