This paper documents the setup and validation of nonlinear autoregressive network with exogenous inputs (NARX) models of a heavy-duty single-shaft gas turbine (GT). The data used for model training are time series datasets of several different maneuvers taken experimentally on a GT General Electric PG 9351FA during the start-up procedure and refer to cold, warm, and hot start-up. The trained NARX models are used to predict other experimental datasets, and comparisons are made among the outputs of the models and the corresponding measured data. Therefore, this paper addresses the challenge of setting up robust and reliable NARX models, by means of a sound selection of training datasets and a sensitivity analysis on the number of neurons. Moreover, a new performance function for the training process is defined to weigh more the most rapid transients. The final aim of this paper is the setup of a powerful, easy-to-build and very accurate simulation tool, which can be used for both control logic tuning and GT diagnostics, characterized by good generalization capability.
Skip Nav Destination
Article navigation
July 2018
Research-Article
Development of Reliable NARX Models of Gas Turbine Cold, Warm, and Hot Start-Up
Hilal Bahlawan,
Hilal Bahlawan
Dipartimento di Ingegneria,
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Search for other works by this author on:
Mirko Morini,
Mirko Morini
Dipartimento di Ingegneria e Architettura,
Università degli Studi di Parma,
Parma 43124, Italy
Università degli Studi di Parma,
Parma 43124, Italy
Search for other works by this author on:
Michele Pinelli,
Michele Pinelli
Dipartimento di Ingegneria,
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Search for other works by this author on:
Pier Ruggero Spina,
Pier Ruggero Spina
Dipartimento di Ingegneria,
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Search for other works by this author on:
Mauro Venturini
Mauro Venturini
Dipartimento di Ingegneria,
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Search for other works by this author on:
Hilal Bahlawan
Dipartimento di Ingegneria,
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Mirko Morini
Dipartimento di Ingegneria e Architettura,
Università degli Studi di Parma,
Parma 43124, Italy
Università degli Studi di Parma,
Parma 43124, Italy
Michele Pinelli
Dipartimento di Ingegneria,
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Pier Ruggero Spina
Dipartimento di Ingegneria,
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Mauro Venturini
Dipartimento di Ingegneria,
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Contributed by the Aircraft Engine Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received November 16, 2017; final manuscript received November 18, 2017; published online April 23, 2018. Editor: David Wisler.
J. Eng. Gas Turbines Power. Jul 2018, 140(7): 071202 (13 pages)
Published Online: April 23, 2018
Article history
Received:
November 16, 2017
Revised:
November 18, 2017
Citation
Bahlawan, H., Morini, M., Pinelli, M., Ruggero Spina, P., and Venturini, M. (April 23, 2018). "Development of Reliable NARX Models of Gas Turbine Cold, Warm, and Hot Start-Up." ASME. J. Eng. Gas Turbines Power. July 2018; 140(7): 071202. https://doi.org/10.1115/1.4038838
Download citation file:
Get Email Alerts
Cited By
Temperature Dependence of Aerated Turbine Lubricating Oil Degradation from a Lab-Scale Test Rig
J. Eng. Gas Turbines Power
Multi-Disciplinary Surrogate-Based Optimization of a Compressor Rotor Blade Considering Ice Impact
J. Eng. Gas Turbines Power
Experimental Investigations on Carbon Segmented Seals With Smooth and Pocketed Pads
J. Eng. Gas Turbines Power
Related Articles
Bayesian and Sensitivity Analysis Approaches to Modeling the Direct Solar Irradiance
J. Sol. Energy Eng (August,2006)
Real-Time Variable Geometry Triaxial Gas Turbine Model for Hardware-in-the-Loop Simulation Experiments
J. Eng. Gas Turbines Power (September,2018)
A New Approach to the Gray-Box Identification of Wiener Models With the Application of Gas Turbine Engine Modeling
J. Eng. Gas Turbines Power (July,2015)
Artificial Intelligence for the Diagnostics of Gas Turbines—Part II: Neuro-Fuzzy Approach
J. Eng. Gas Turbines Power (July,2007)
Related Proceedings Papers
Related Chapters
Estimating Resilient Modulus Using Neural Network Models
Intelligent Engineering Systems Through Artificial Neural Networks, Volume 17
Characterization of a Perchlorate Contaminated Site
Intelligent Engineering Systems through Artificial Neural Networks Volume 18
Spiking Neural Networks on Self-Updating System-on-Chip for Autonomous Control
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)